RESUMEN
Urease is known to be a major contributor to pathologies induced by Helicobacter pylori and Proteus species. In H pylori, urease allows the bacteria to survive in an acidic gastric environment during colonisation, playing an important role in the pathogenesis of gastric and peptic ulcers. Ureolytic activity also results in the production of ammonia in close proximity to the gastric epithelium, causing cell damage and inflammation. In the case of Proteus species (notably Proteus mirabilis) infection, stones are formed due to the presence of ammonia and carbon dioxide released by urease action. In addition, the ammonia released is able to damage the glycosaminoglycan layer, which protects the urothelial surface against bacterial infection. In this context, the administration of urease inhibitors may be an effective therapy for urease-dependent pathogenic bacteria. This is a review of the role of ureases in H pylori and Proteus species infections, focussing on the biochemical and clinical aspects of the most promising and/or potent urease inhibitors for the treatment of gastric and urinary tract infections.
Asunto(s)
Gastritis/tratamiento farmacológico , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Proteus/tratamiento farmacológico , Ureasa/antagonistas & inhibidores , Infecciones Urinarias/tratamiento farmacológico , Antibacterianos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Gastritis/microbiología , Helicobacter pylori/enzimología , Helicobacter pylori/patogenicidad , Humanos , Proteus/enzimología , Proteus/patogenicidad , Ureasa/fisiología , VirulenciaRESUMEN
Canatoxin is a toxic protein from Canavalia ensiformis seeds, lethal to mice (LD(50)=2 mg/kg) and insects. Further characterization of canatoxin showed that its main native form (184 kDa) is a non-covalently linked dimer of a 95 kDa polypeptide containing zinc and nickel. Partial sequencing of internal peptides indicated homology with urease (EC 3.5.1.5) from the same seed. Canatoxin has approx. 30% of urease's activity for urea, and K(m) of 2-7 mM. The proteins differ in their affinities for metal ions and were separated by affinity chromatography on a Zn(2+) matrix. Similar to canatoxin, urease activates blood platelets and interacts with glycoconjugates. In contrast with canatoxin, no lethality was seen in mice injected with urease (10 mg/kg). Pretreatment with p-hydroxymercuribenzoate irreversibly abolished the ureolytic activity of both proteins. On the other hand, p-hydroxymercuribenzoate-treated canatoxin was still lethal to mice, and both treated proteins were fully active in promoting platelet aggregation and binding to glycoconjugates. Taken together, our data indicate that canatoxin is a variant form of urease. Moreover, we show for the first time that these proteins display several biological effects that are unrelated to their enzymic activity for urea.