Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
mBio ; 15(3): e0318523, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38380929

RESUMEN

Centromeres are constricted chromosomal regions that are essential for cell division. In eukaryotes, centromeres display a remarkable architectural and genetic diversity. The basis of centromere-accelerated evolution remains elusive. Here, we focused on Pneumocystis species, a group of mammalian-specific fungal pathogens that form a sister taxon with that of the Schizosaccharomyces pombe, an important genetic model for centromere biology research. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of S. pombe. Using organisms from a short-term in vitro culture or infected animal models and chromatin immunoprecipitation (ChIP)-Seq, we identified CENP-A bound regions in two Pneumocystis species that diverged ~35 million years ago. Each species has a unique short regional centromere (<10 kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. These features suggest an epigenetic specification of centromere function. Analysis of centromeric DNA across multiple Pneumocystis species suggests a vertical transmission at least 100 million years ago. The common ancestry of Pneumocystis and S. pombe centromeres is untraceable at the DNA level, but the overall architectural similarity could be the result of functional constraint for successful chromosomal segregation.IMPORTANCEPneumocystis species offer a suitable genetic system to study centromere evolution in pathogens because of their phylogenetic proximity with the non-pathogenic yeast S. pombe, a popular model for cell biology. We used this system to explore how centromeres have evolved after the divergence of the two clades ~ 460 million years ago. To address this question, we established a protocol combining short-term culture and ChIP-Seq to characterize centromeres in multiple Pneumocystis species. We show that Pneumocystis have short epigenetic centromeres that function differently from those in S. pombe.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteína A Centromérica/genética , Filogenia , Proteínas Cromosómicas no Histona/genética , Centrómero/metabolismo , Schizosaccharomyces/genética , ADN/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Saccharomyces cerevisiae/genética
2.
Nucleic Acids Res ; 52(4): 1688-1701, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38084929

RESUMEN

Centromeric chromatin plays a crucial role in kinetochore assembly and chromosome segregation. Centromeres are specified through the loading of the histone H3 variant CENP-A by the conserved chaperone Scm3/HJURP. The N-terminus of Scm3/HJURP interacts with CENP-A, while the C-terminus facilitates centromere localization by interacting with the Mis18 holocomplex via a small domain, called the Mis16-binding domain (Mis16-BD) in fission yeast. Fungal Scm3 proteins contain an additional conserved cysteine-rich domain (CYS) of unknown function. Here, we find that CYS binds zinc in vitro and is essential for the localization and function of fission yeast Scm3. Disrupting CYS by deletion or introduction of point mutations within its zinc-binding motif prevents Scm3 centromere localization and compromises kinetochore integrity. Interestingly, CYS alone can localize to the centromere, albeit weakly, but its targeting is greatly enhanced when combined with Mis16-BD. Expressing a truncated protein containing both Mis16-BD and CYS, but lacking the CENP-A binding domain, causes toxicity and is accompanied by considerable chromosome missegregation and kinetochore loss. These effects can be mitigated by mutating the CYS zinc-binding motif. Collectively, our findings establish the essential role of the cysteine-rich domain in fungal Scm3 proteins and provide valuable insights into the mechanism of Scm3 centromere targeting.


Asunto(s)
Proteínas Portadoras , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas Portadoras/genética , Centrómero/genética , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Cisteína/metabolismo , Cinetocoros/metabolismo , Chaperonas Moleculares/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Zinc/metabolismo
3.
bioRxiv ; 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37425787

RESUMEN

Centromeres are genomic regions that coordinate accurate chromosomal segregation during mitosis and meiosis. Yet, despite their essential function, centromeres evolve rapidly across eukaryotes. Centromeres are often the sites of chromosomal breaks which contribute to genome shuffling and promote speciation by inhibiting gene flow. How centromeres form in strongly host-adapted fungal pathogens has yet to be investigated. Here, we characterized the centromere structures in closely related species of mammalian-specific pathogens of the fungal phylum of Ascomycota. Methods allowing reliable continuous culture of Pneumocystis species do not currently exist, precluding genetic manipulation. CENP-A, a variant of histone H3, is the epigenetic marker that defines centromeres in most eukaryotes. Using heterologous complementation, we show that the Pneumocystis CENP-A ortholog is functionally equivalent to CENP-ACnp1 of Schizosaccharomyces pombe. Using organisms from a short-term in vitro culture or infected animal models and ChIP-seq, we identified centromeres in three Pneumocystis species that diverged ~100 million years ago. Each species has a unique short regional centromere (< 10kb) flanked by heterochromatin in 16-17 monocentric chromosomes. They span active genes and lack conserved DNA sequence motifs and repeats. CENP-C, a scaffold protein that links the inner centromere to the kinetochore appears dispensable in one species, suggesting a kinetochore rewiring. Despite the loss of DNA methyltransferases, 5-methylcytosine DNA methylation occurs in these species, though not related to centromere function. These features suggest an epigenetic specification of centromere function.

4.
Cell ; 180(1): 150-164.e15, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31883795

RESUMEN

In eukaryotes, heterochromatin is generally located at the nuclear periphery. This study investigates the biological significance of perinuclear positioning for heterochromatin maintenance and gene silencing. We identify the nuclear rim protein Amo1NUPL2 as a factor required for the propagation of heterochromatin at endogenous and ectopic sites in the fission yeast genome. Amo1 associates with the Rix1PELP1-containing RNA processing complex RIXC and with the histone chaperone complex FACT. RIXC, which binds to heterochromatin protein Swi6HP1 across silenced chromosomal domains and to surrounding boundary elements, connects heterochromatin with Amo1 at the nuclear periphery. In turn, the Amo1-enriched subdomain is critical for Swi6 association with FACT that precludes histone turnover to promote gene silencing and preserve epigenetic stability of heterochromatin. In addition to uncovering conserved factors required for perinuclear positioning of heterochromatin, these analyses elucidate a mechanism by which a peripheral subdomain enforces stable gene repression and maintains heterochromatin in a heritable manner.


Asunto(s)
Epigénesis Genética/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Represión Epigenética/genética , Silenciador del Gen , Herencia , Histonas/genética , Histonas/metabolismo , Metilación , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
5.
Genetics ; 213(1): 127-141, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31278118

RESUMEN

The fission yeast Schizosaccharomyces pombe is a powerful genetic model system for uncovering fundamental principles of heterochromatin assembly and epigenetic inheritance of chromatin states. Heterochromatin defined by histone H3 lysine 9 methylation and HP1 proteins coats large chromosomal domains at centromeres, telomeres, and the mating-type (mat) locus. Although genetic and biochemical studies have provided valuable insights into heterochromatin assembly, many key mechanistic details remain unclear. Here, we use a sensitized reporter system at the mat locus to screen for factors affecting heterochromatic silencing. In addition to known components of heterochromatin assembly pathways, our screen identified eight new factors including the cohesin-associated protein Pds5. We find that Pds5 enriched throughout heterochromatin domains is required for proper maintenance of heterochromatin. This function of Pds5 requires its associated Eso1 acetyltransferase, which is implicated in the acetylation of cohesin. Indeed, introducing an acetylation-mimicking mutation in a cohesin subunit suppresses defects in heterochromatin assembly in pds5∆ and eso1∆ cells. Our results show that in cells lacking Pds5, cohesin interferes with heterochromatin assembly. Supporting this, eliminating cohesin from the mat locus in the pds5∆ mutant restores both heterochromatin assembly and gene silencing. These analyses highlight an unexpected requirement for Pds5 in ensuring proper coordination between cohesin and heterochromatin factors to effectively maintain gene silencing.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Heterocromatina/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Genes del Tipo Sexual de los Hongos , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética , Cohesinas
6.
Nature ; 543(7643): 126-130, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28199302

RESUMEN

Uniparental disomy (UPD), in which an individual contains a pair of homologous chromosomes originating from only one parent, is a frequent phenomenon that is linked to congenital disorders and various cancers. UPD is thought to result mostly from pre- or post-zygotic chromosome missegregation. However, the factors that drive UPD remain unknown. Here we use the fission yeast Schizosaccharomyces pombe as a model to investigate UPD, and show that defects in the RNA interference (RNAi) machinery or in the YTH domain-containing RNA elimination factor Mmi1 cause high levels of UPD in vegetative diploid cells. This phenomenon is not due to defects in heterochromatin assembly at centromeres. Notably, in cells lacking RNAi components or Mmi1, UPD is associated with the untimely expression of gametogenic genes. Deletion of the upregulated gene encoding the meiotic cohesin Rec8 or the cyclin Crs1 suppresses UPD in both RNAi and mmi1 mutants. Moreover, overexpression of Rec8 is sufficient to trigger UPD in wild-type cells. Rec8 expressed in vegetative cells localizes to chromosomal arms and to the centromere core, where it is required for localization of the cohesin subunit Psc3. The centromeric localization of Rec8 and Psc3 promotes UPD by uniquely affecting chromosome segregation, causing a reductional segregation of one homologue. Together, these findings establish the untimely vegetative expression of gametogenic genes as a causative factor of UPD, and provide a solid foundation for understanding this phenomenon, which is linked to diverse human diseases.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Células Germinativas/metabolismo , Modelos Biológicos , Mutación , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Disomía Uniparental/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/genética , Ciclinas/deficiencia , Ciclinas/genética , Diploidia , Heterocromatina/metabolismo , Humanos , Meiosis/genética , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferencia de ARN , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Factores de Tiempo , Disomía Uniparental/patología , Factores de Escisión y Poliadenilación de ARNm/deficiencia , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
7.
Proc Natl Acad Sci U S A ; 112(51): 15548-55, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26631744

RESUMEN

Cotranscriptional RNA processing and surveillance factors mediate heterochromatin formation in diverse eukaryotes. In fission yeast, RNAi machinery and RNA elimination factors including the Mtl1-Red1 core and the exosome are involved in facultative heterochromatin assembly; however, the exact mechanisms remain unclear. Here we show that RNA elimination factors cooperate with the conserved exoribonuclease Dhp1/Rat1/Xrn2, which couples pre-mRNA 3'-end processing to transcription termination, to promote premature termination and facultative heterochromatin formation at meiotic genes. We also find that Dhp1 is critical for RNAi-mediated heterochromatin assembly at retroelements and regulated gene loci and facilitates the formation of constitutive heterochromatin at centromeric and mating-type loci. Remarkably, our results reveal that Dhp1 interacts with the Clr4/Suv39h methyltransferase complex and acts directly to nucleate heterochromatin. Our work uncovers a previously unidentified role for 3'-end processing and transcription termination machinery in gene silencing through premature termination and suggests that noncanonical transcription termination by Dhp1 and RNA elimination factors is linked to heterochromatin assembly. These findings have important implications for understanding silencing mechanisms targeting genes and repeat elements in higher eukaryotes.


Asunto(s)
Exorribonucleasas/metabolismo , Silenciador del Gen , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Terminación de la Transcripción Genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Ensamble y Desensamble de Cromatina/genética , Ensamble y Desensamble de Cromatina/fisiología , Exorribonucleasas/genética , Genes Fúngicos , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina , Intrones , Meiosis/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mutación , Procesamiento de Término de ARN 3' , ARN de Hongos/genética , ARN de Hongos/metabolismo , Retroelementos , Schizosaccharomyces/crecimiento & desarrollo , Proteínas de Schizosaccharomyces pombe/genética
8.
Curr Biol ; 25(3): 348-356, 2015 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-25619765

RESUMEN

In most eukaryotes, centromeres are defined epigenetically by presence of the histone H3 variant CENP-A [1-3]. CENP-A-containing chromatin recruits the constitutive centromere-associated network (CCAN) of proteins, which in turn directs assembly of the outer kinetochore to form microtubule attachments and ensure chromosome segregation fidelity [4-6]. Whereas the mechanisms that load CENP-A at centromeres are being elucidated, the functions of its divergent N-terminal tail remain enigmatic [7-12]. Here, we employ the well-studied fission yeast centromere [13-16] to investigate the function of the CENP-A (Cnp1) N-tail. We show that alteration of the N-tail does not affect Cnp1 loading at centromeres, outer kinetochore formation, or spindle checkpoint signaling but nevertheless elevates chromosome loss. N-tail mutants exhibited synthetic lethality with an altered centromeric DNA sequence, with rare survivors harboring chromosomal fusions in which the altered centromere was epigenetically inactivated. Elevated centromere inactivation was also observed for N-tail mutants with unaltered centromeric DNA sequences. N-tail mutants specifically reduced localization of the CCAN proteins Cnp20/CENP-T and Mis6/CENP-I, but not Cnp3/CENP-C. Overexpression of Cnp20/CENP-T suppressed defects in an N-tail mutant, suggesting a link between reduced CENP-T recruitment and the observed centromere inactivation phenotype. Thus, the Cnp1 N-tail promotes epigenetic stability of centromeres in fission yeast, at least in part via recruitment of the CENP-T branch of the CCAN.


Asunto(s)
Centrómero/fisiología , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Epigénesis Genética/fisiología , Proteínas de Schizosaccharomyces pombe/metabolismo , Centrómero/metabolismo , Inmunoprecipitación de Cromatina , Cartilla de ADN/genética , Electroforesis en Gel de Campo Pulsado , Fluorescencia , Histonas/metabolismo , Immunoblotting , Mutación/genética , Reacción en Cadena de la Polimerasa , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/genética
9.
Nat Cell Biol ; 15(9): 1056-66, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23873148

RESUMEN

The basic determinant of chromosome inheritance, the centromere, is specified in many eukaryotes by an epigenetic mark. Using gene targeting in human cells and fission yeast, chromatin containing the centromere-specific histone H3 variant CENP-A is demonstrated to be the epigenetic mark that acts through a two-step mechanism to identify, maintain and propagate centromere function indefinitely. Initially, centromere position is replicated and maintained by chromatin assembled with the centromere-targeting domain (CATD) of CENP-A substituted into H3. Subsequently, nucleation of kinetochore assembly onto CATD-containing chromatin is shown to require either the amino- or carboxy-terminal tail of CENP-A for recruitment of inner kinetochore proteins, including stabilizing CENP-B binding to human centromeres or direct recruitment of CENP-C, respectively.


Asunto(s)
Autoantígenos/genética , Centrómero/fisiología , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Histonas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Adenoviridae/genética , Autoantígenos/metabolismo , Centrómero/ultraestructura , Proteína A Centromérica , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Células Epiteliales/citología , Células Epiteliales/metabolismo , Vectores Genéticos , Histonas/metabolismo , Humanos , Estructura Terciaria de Proteína , Retina/citología , Retina/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal
10.
Mol Cell ; 40(3): 351-2, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21070962

RESUMEN

In this issue of Molecular Cell, Hewawasam et al. (2010) and Ranjitkar et al. (2010) identify and characterize Psh1, an E3 ubiquitin ligase that specifically targets the centromeric histone Cse4 in budding yeast and limits its misincorporation at noncentromeric regions.

11.
Eukaryot Cell ; 2(2): 341-50, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12684383

RESUMEN

We show that Neurospora crassa has a single histone H1 gene, hH1, which encodes a typical linker histone with highly basic N- and C-terminal tails and a central globular domain. A green fluorescent protein-tagged histone H1 chimeric protein was localized exclusively to nuclei. Mutation of hH1 by repeat-induced point mutation (RIP) did not result in detectable defects in morphology, DNA methylation, mutagen sensitivity, DNA repair, fertility, RIP, chromosome pairing, or chromosome segregation. Nevertheless, hH1 mutants had mycelial elongation rates that were lower than normal on all tested carbon sources. This slow linear growth phenotype, however, was less evident on medium containing ethanol. The pyruvate decarboxylase gene, cfp, was abnormally derepressed in hH1 mutants on ethanol-containing medium. This derepression was also found when an ectopically integrated fusion of the cfp gene promoter to the reporter gene hph was analyzed. Thus, Neurospora histone H1 is required for the proper regulation of cfp, a gene with a key role in the respiratory-fermentative pathway.


Asunto(s)
Respiración de la Célula/genética , Regulación Fúngica de la Expresión Génica/genética , Histonas/genética , Neurospora crassa/enzimología , Neurospora crassa/genética , Piruvato Descarboxilasa/biosíntesis , Secuencia de Aminoácidos/genética , Secuencia de Bases/genética , Respiración de la Célula/efectos de los fármacos , Tamaño de la Célula/genética , Segregación Cromosómica/genética , Metilación de ADN , Reparación del ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Etanol/farmacología , Datos de Secuencia Molecular , Mutágenos/farmacología , Neurospora crassa/crecimiento & desarrollo , Mutación Puntual/genética , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Estructura Terciaria de Proteína/genética , Piruvato Descarboxilasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA