Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(23): 238302, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134789

RESUMEN

We reveal that the mechanical pulsation of locally synchronized particles is a generic route to propagate deformation waves. We consider a model of dense repulsive particles whose activity drives periodic change in size of each individual. The dynamics is inspired by biological tissues where cells consume fuel to sustain active deformation. We show that the competition between repulsion and synchronization triggers an instability which promotes a wealth of dynamical patterns, ranging from spiral waves to defect turbulence. We identify the mechanisms underlying the emergence of patterns, and characterize the corresponding transitions. By coarse-graining the dynamics, we propose a hydrodynamic description of an assembly of pulsating particles, and discuss an analogy with reaction-diffusion systems.

2.
Phys Rev Lett ; 131(13): 138301, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37832019

RESUMEN

We develop a general classification of the nature of the instabilities yielding spatial organization in open nonideal reaction-diffusion systems, based on linear stability analysis. This encompasses dynamics where chemical species diffuse, interact with each other, and undergo chemical reactions driven out of equilibrium by external chemostats. We find analytically that these instabilities can be of two types: instabilities caused by intermolecular energetic interactions (E type), and instabilities caused by multimolecular out-of-equilibrium chemical reactions (R type). Furthermore, we identify a class of chemical reaction networks, containing unimolecular networks but also extending beyond them, that can only undergo E-type instabilities. We illustrate our analytical findings with numerical simulations on two reaction-diffusion models, each displaying one of the two types of instability and generating stable patterns.

3.
Phys Rev Lett ; 129(12): 128002, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36179154

RESUMEN

Biological materials, such as the actin cytoskeleton, exhibit remarkable structural adaptability to various external stimuli by consuming different amounts of energy. In this Letter, we use methods from large deviation theory to identify a thermodynamic control principle for structural transitions in a model cytoskeletal network. Specifically, we demonstrate that biasing the dynamics with respect to the work done by nonequilibrium components effectively renormalizes the interaction strength between such components, which can eventually result in a morphological transition. Our work demonstrates how a thermodynamic quantity can be used to renormalize effective interactions, which in turn can tune structure in a predictable manner, suggesting a thermodynamic principle for the control of cytoskeletal structure and dynamics.


Asunto(s)
Citoesqueleto de Actina , Citoesqueleto , Citoesqueleto de Actina/química , Actinas , Termodinámica
4.
J Chem Phys ; 157(5): 054901, 2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35933206

RESUMEN

Active systems, which are driven out of equilibrium by local non-conservative forces, can adopt unique behaviors and configurations. An important challenge in the design of novel materials, which utilize such properties, is to precisely connect the static structure of active systems to the dissipation of energy induced by the local driving. Here, we use tools from liquid-state theories and machine learning to take on this challenge. We first analytically demonstrate for an isotropic active matter system that dissipation and pair correlations are closely related when driving forces behave like an active temperature. We then extend a nonequilibrium mean-field framework for predicting these pair correlations, which unlike most existing approaches is applicable even for strongly interacting particles and far from equilibrium, to predicting dissipation in these systems. Based on this theory, we reveal a robust analytic relation between dissipation and structure, which holds even as the system approaches a nonequilibrium phase transition. Finally, we construct a neural network that maps static configurations of particles to their dissipation rate without any prior knowledge of the underlying dynamics. Our results open novel perspectives on the interplay between dissipation and organization out of equilibrium.

5.
J Chem Phys ; 157(1): 014902, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803802

RESUMEN

Active systems, which are driven out of equilibrium by local non-conservative forces, exhibit unique behaviors and structures with potential utility for the design of novel materials. An important and difficult challenge along the path toward this goal is to precisely predict how the structure of active systems is modified as their driving forces push them out of equilibrium. Here, we use tools from liquid-state theories to approach this challenge for a classic minimal active matter model. First, we construct a nonequilibrium mean-field framework that can predict the structure of systems of weakly interacting particles. Second, motivated by equilibrium solvation theories, we modify this theory to extend it with surprisingly high accuracy to systems of strongly interacting particles, distinguishing it from most existing similarly tractable approaches. Our results provide insight into spatial organization in strongly interacting out-of-equilibrium systems.

6.
Phys Rev E ; 105(5): L052601, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706183

RESUMEN

The importance of mesoscale fluctuations in flowing amorphous materials is widely accepted, without a clear understanding of their role. We propose a mean-field elastoplastic model that admits both stress and strain-rate fluctuations, and investigate the character of its power distribution under steady shear flow. The model predicts the suppression of negative power fluctuations near the liquid-solid transition; the existence of a fluctuation relation in limiting regimes but its replacement in general by stretched-exponential power-distribution tails; and a crossover between two distinct mechanisms for negative power fluctuations in the liquid and the yielding solid phases. We connect these predictions with recent results from particle-based, numerical microrheological experiments.

7.
Entropy (Basel) ; 24(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35205548

RESUMEN

Many complex fluids can be described by continuum hydrodynamic field equations, to which noise must be added in order to capture thermal fluctuations. In almost all cases, the resulting coarse-grained stochastic partial differential equations carry a short-scale cutoff, which is also reflected in numerical discretisation schemes. We draw together our recent findings concerning the construction of such schemes and the interpretation of their continuum limits, focusing, for simplicity, on models with a purely diffusive scalar field, such as 'Model B' which describes phase separation in binary fluid mixtures. We address the requirement that the steady-state entropy production rate (EPR) must vanish for any stochastic hydrodynamic model in a thermal equilibrium. Only if this is achieved can the given discretisation scheme be relied upon to correctly calculate the nonvanishing EPR for 'active field theories' in which new terms are deliberately added to the fluctuating hydrodynamic equations that break detailed balance. To compute the correct probabilities of forward and time-reversed paths (whose ratio determines the EPR), we must make a careful treatment of so-called 'spurious drift' and other closely related terms that depend on the discretisation scheme. We show that such subtleties can arise not only in the temporal discretisation (as is well documented for stochastic ODEs with multiplicative noise) but also from spatial discretisation, even when noise is additive, as most active field theories assume. We then review how such noise can become multiplicative via off-diagonal couplings to additional fields that thermodynamically encode the underlying chemical processes responsible for activity. In this case, the spurious drift terms need careful accounting, not just to evaluate correctly the EPR but also to numerically implement the Langevin dynamics itself.

8.
Phys Rev E ; 103(3-1): 032607, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33862678

RESUMEN

We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models, the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress. We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics of their collective modes.

9.
Phys Rev E ; 103(2-1): 022603, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33736055

RESUMEN

We analyze collective motion that occurs during rare (large deviation) events in systems of active particles, both numerically and analytically. We discuss the associated dynamical phase transition to collective motion, which occurs when the active work is biased towards larger values, and is associated with alignment of particles' orientations. A finite biasing field is needed to induce spontaneous symmetry breaking, even in large systems. Particle alignment is computed exactly for a system of two particles. For many-particle systems, we analyze the symmetry breaking by an optimal-control representation of the biased dynamics, and we propose a fluctuating hydrodynamic theory that captures the emergence of polar order in the biased state.

10.
Phys Rev E ; 104(6): L062602, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35030849

RESUMEN

Odd materials feature antisymmetric response to perturbations. This anomalous property can stem from the nonequilibrium activity of their components, which is sustained by an external energy supply. These materials open the door to designing innovative engines which extract work by applying cyclic deformations, without any equivalent in equilibrium. Here, we reveal that the efficiency of such energy conversion, from local activity to macroscopic work, can be arbitrarily close to unity when the cycles of deformation are properly designed. We illustrate these principles in some canonical viscoelastic materials, which leads us to identify strategies for optimizing power and efficiency according to material properties and to delineate guidelines for the design of more complex odd engines.

11.
Phys Rev E ; 102(1-1): 010101, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32795058

RESUMEN

Active matter constantly dissipates energy to power the self-propulsion of its microscopic constituents. This opens the door to designing innovative cyclic engines without any equilibrium equivalent. We offer a consistent thermodynamic framework to characterize and optimize the performances of such cycles. Based on a minimal model, we put forward a protocol which extracts work by controlling only the properties of the confining walls at boundaries, and we rationalize the transitions between optimal cycles. We show that the corresponding power and efficiency are generally proportional, so that they reach their maximum values at the same cycle time in contrast with thermal cycles, and we provide a generic relation constraining the fluctuations of the power.

12.
Phys Rev E ; 99(2-1): 022605, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30934223

RESUMEN

Active work measures how far the local self-forcing of active particles translates into real motion. Using population Monte Carlo methods, we investigate large deviations in the active work for repulsive active Brownian disks. Minimizing the active work generically results in dynamical arrest; in contrast, despite the lack of aligning interactions, trajectories of high active work correspond to a collectively moving, aligned state. We use heuristic and analytic arguments to explain the origin of dynamical phase transitions separating the arrested, typical, and aligned regimes.

13.
Biophys J ; 114(7): 1667-1679, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29642036

RESUMEN

Active diffusion of intracellular components is emerging as an important process in cell biology. This process is mediated by complex assemblies of molecular motors and cytoskeletal filaments that drive force generation in the cytoplasm and facilitate enhanced motion. The kinetics of molecular motors have been precisely characterized in vitro by single molecule approaches, but their in vivo behavior remains elusive. Here, we study the active diffusion of vesicles in mouse oocytes, where this process plays a key role in nuclear positioning during development, and combine an experimental and theoretical framework to extract molecular-scale force kinetics (force, power stroke, and velocity) of the in vivo active process. Assuming a single dominant process, we find that the nonequilibrium activity induces rapid kicks of duration τ ∼ 300 µs resulting in an average force of F ∼ 0.4 pN on vesicles in in vivo oocytes, remarkably similar to the kinetics of in vitro myosin-V. Our results reveal that measuring in vivo active fluctuations allows extraction of the molecular-scale activity in agreement with single-molecule studies and demonstrates a mesoscopic framework to access force kinetics.


Asunto(s)
Fenómenos Mecánicos , Oocitos/citología , Animales , Fenómenos Biomecánicos , Difusión , Espacio Intracelular/metabolismo , Cinética , Ratones , Modelos Biológicos , Movimiento
14.
Biophys J ; 114(4): 939-946, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29490253

RESUMEN

In living matter, shape fluctuations induced by acto-myosin are usually studied in vitro via reconstituted gels, whose properties are controlled by changing the concentrations of actin, myosin, and cross-linkers. Such an approach deliberately avoids consideration of the complexity of biochemical signaling inherent to living systems. Acto-myosin activity inside living cells is mainly regulated by the Rho signaling pathway, which is composed of multiple layers of coupled activators and inhibitors. Here, we investigate how such a pathway controls the dynamics of confluent epithelial tissues by tracking the displacements of the junction points between cells. Using a phenomenological model to analyze the vertex fluctuations, we rationalize the effects of different Rho signaling targets on the emergent tissue activity by quantifying the effective diffusion coefficient, and the persistence time and length of the fluctuations. Our results reveal an unanticipated correlation between layers of activation/inhibition and spatial fluctuations within tissues. Overall, this work connects regulation via biochemical signaling with mesoscopic spatial fluctuations, with potential application to the study of structural rearrangements in epithelial tissues.


Asunto(s)
Actomiosina/metabolismo , Células Epiteliales/metabolismo , Riñón/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Animales , Perros , Riñón/citología , Células de Riñón Canino Madin Darby , Transducción de Señal
15.
Phys Rev E ; 94(1-1): 012610, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27575182

RESUMEN

We build up a phenomenological picture in terms of the effective dynamics of a tracer confined in a cage experiencing random hops to capture some characteristics of glassy systems. This minimal description exhibits scale invariance properties for the small-displacement distribution that echo experimental observations. We predict the existence of exponential tails as a crossover between two Gaussian regimes. Moreover, we demonstrate that the onset of glassy behavior is controlled only by two dimensionless numbers: the number of hops occurring during the relaxation of the particle within a local cage and the ratio of the hopping length to the cage size.

16.
Phys Rev Lett ; 117(3): 038103, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472145

RESUMEN

Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

17.
Biochim Biophys Acta ; 1853(11 Pt B): 3083-94, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26025677

RESUMEN

Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and transport processes necessary for their function. To understand this activity it is necessary to develop new approaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale force generation into the traditional framework of mechanics of materials. This review highlights recent experimental and theoretical developments towards understanding active cell mechanics. We focus primarily on intracellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is part of a Special Issue entitled: Mechanobiology.


Asunto(s)
Citoesqueleto/fisiología , Metabolismo Energético/fisiología , Modelos Biológicos , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA