RESUMEN
Allergic asthma can vanish over time either spontaneously or induced by allergen-specific immunotherapy. In mice with established airway allergic inflammation, chronic intranasal (IN) allergen challenges decreases progressively airway allergic inflammation. Here we compared the contribution of different regulatory pathways that could be associated with this phenomenon, known as local inhalational tolerance. We found that inhalational tolerance was not associated with increased number of regulatory T cells or suppressive cytokines. Instead, it was associated with increased apoptosis of airway inflammatory leukocytes revealed by annexin-V staining and the expression of apical caspase 8 and effector caspase 3. Also, the transition from acute to chronic phase was associated with a shift in the expression of pro-allergic to pro-apoptotic molecules. The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was found to be a key molecule in mediating resolution of allergic inflammation because anti-TRAIL treatment blocked apoptosis and increased the infiltration of T helper type 2 (Th2) cells and eosinophils. Notably, repeated IN treatment with recombinant TRAIL in established airway allergic inflammation augmented leukocyte apoptosis and decreased the frequency of interleukin-5-producing Th2 cells and eosinophils to airways. Our data indicate that TRAIL signaling is sufficient for downmodulation of allergic airway disease, suggesting a potential therapeutic use of TRAIL for asthma treatment.
Asunto(s)
Alérgenos/inmunología , Hipersensibilidad Respiratoria/inmunología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Apoptosis/inmunología , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 8/genética , Caspasa 8/metabolismo , Enfermedad Crónica , Femenino , Regulación de la Expresión Génica/inmunología , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Pulmón/inmunología , Pulmón/fisiopatología , Ratones , Ratones Noqueados , Proteínas Recombinantes/genética , Hipersensibilidad Respiratoria/tratamiento farmacológico , Ligando Inductor de Apoptosis Relacionado con TNF/genética , Ligando Inductor de Apoptosis Relacionado con TNF/uso terapéutico , Células Th2/inmunologíaRESUMEN
BACKGROUND: Lipids are required for mice sensitization to Ber e 1, Brazil nut major allergen. Here, we characterized different lipid fractions extracted from Brazil nuts and the lipid-binding ability of Ber e 1. Further, we determined their in vivo ability to induce Ber-specific anaphylactic antibodies and the role of invariant natural killer T (iNKT) cells in this process. METHODS: Wild-type (WT) and iNKT cell-deficient mice were sensitized with Ber e 1 and specific lipid fractions, and anaphylactic antibodies were measured by enzyme-linked immunosorbent assay (ELISA) and passive cutaneous anaphylaxis (PCA). The lipid-binding characteristic of Ber e 1 (Ber) was established by using fluorescent probes and (15) N-labeled NMR. In vitro production of IL-4 was determined in Ber/lipid C-stimulated mouse iNKT cells and human T-cell lines containing NKTs primed with CD1d+C1R transfectants by flow cytometry and ELISA, respectively. RESULTS: Only one specific lipid fraction (lipid C), containing neutral and common phospholipids, induced Ber anaphylactic antibodies in mice. Ber e 1 has a lipid-binding site, and our results indicated an interaction between Ber e 1 and lipid C. iNKT-deficient mice produced lower levels of anaphylactic antibodies than WT mice. In vitro, Ber/lipid C-stimulated murine iNKT cells produced IL-4 but not IFN-gamma. Human T-cell lines derived from nut-allergic patients produced IL-4 to Ber/lipid C in a CD1d- and dose-dependent manner. CONCLUSION: Lipid fraction C from Brazil nut presents an essential adjuvant activity to Ber e 1 sensitization, and iNKT cells play a critical role in the development of Brazil nut-allergic response.