RESUMEN
The use of pyrohydrolysis as a sample preparation method for further halogen determination is extensively discussed in this review, covering studies published in the last 30 years. This method is compatible with both organic (such as cellulose, fossil fuels, carbon nanotubes, and graphite) and inorganic (such as rocks, silicates, alumina, and nuclear fuels) matrices. It has also been used for samples with different organic matter content, such as coal, mineral supplements, and soil. Sample masses vary greatly and are dependent on organic matter content in the samples, ranging from 50 mg to up to 500 mg for organic samples, and up to 4 g to inorganic samples. Different additives, such as V2O5 and cellulose, or flame retardants, such as silica, could also be used to improve analyte recovery using pyrohydrolysis. Dilute alkaline solutions or even water have been used as absorbing solutions, with mainly NaOH, NH4OH, and mixtures of NaHCO3 and Na2CO3 being applied. Furthermore, pyrohydrolysis is compatible with detection techniques such as ion chromatography, inductively coupled plasma mass spectrometry, ion selective electrode, inductively coupled plasma optical emission spectrometry, energy-dispersive X-ray fluorescence spectrometry, spectrophotometry, and isotope ratio mass spectrometry. Other advantages usually related to this method are the low residual carbon concentration of digests and the low residue generation. A critical comparison with alkaline extraction, alkaline fusion, Schöniger oxygen flask combustion, combustion bomb and microwave-induced combustion is also provided.
RESUMEN
In the context of grain storage, impurities and soybeans defects in soybeans can significantly impact the equilibrium moisture content. This, cause moisture migration and heating of the stored product, leading to increased respiratory activity. Furthermore, temperature measurements within stored grain mass do not provide sufficient information for effective grain quality monitoring, primarily due to the grains excellent thermal insulating properties. To address this issue, we propose a different approach: monitoring the equilibrium moisture content and CO2 concentration as indicators of soybean respiration within the intergranular spaces of the stored grain mass. This study propose monitoring the CO2 concentration in the intergranular air along with environmental variables for early detection of physicochemical and morphological changes in soybeans stored in vertical silos using near infrared spectroscopy, X-ray diffraction and scanning electron microscopy. Thermogravimetry and spectrometry analyses revealed that the interrelationships among variables had a direct impact on soybean quality attributes. Specifically, the presence of soybeans with 5.2 % impurities led to an increased in respiration rates, resulting in a CO2 concentration of up to 5000 ppm and the consumption of up to 3.6 % of dry matter. Consequently, there were changes in the percentage of ash, proteins, fibers, and oils compositions. These findings highlight the potential for indirect assessments, enabling the prediction of physicochemical quality and contamination of soybeans stored in vertical silos through continuous monitoring of CO2 concentration and equilibrium moisture content.
Asunto(s)
Dióxido de Carbono , Glycine max , Glycine max/química , Dióxido de Carbono/análisis , Grano Comestible/química , Microscopía Electrónica de RastreoRESUMEN
The use of phytochemicals as natural food additives is a topic of interest for both academic and food industry communities. However, many of these substances are sensitive to environmental conditions. For this reason, encapsulation is usually performed prior to incorporation into food products. In this sense, ultrasound-assisted encapsulation is an emerging technique that has been gaining attention in this field, bringing important advantages for the production of functional food products. This review article covered applications published in the last five years (from 2019 to 2023) on the use of ultrasound to encapsulate phytochemicals for further incorporation into food. The ultrasound mechanisms for encapsulation, its parameters, such as reactor configuration, frequency, and power, and the use of ultrasound technology, along with conventional encapsulation techniques, were all discussed. Additionally, the main challenges of existing methods and future possibilities were discussed. In general, ultrasound-assisted encapsulation has been considered a great tool for the production of smaller capsules with a lower polydispersity index. Encapsulated materials also present a higher bioavailability. However, there is still room for further developments regarding process scale-up for industrial applications. Future studies should also focus on incorporating produced capsules in model food products to further assess their stability and sensory properties.
RESUMEN
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Asunto(s)
Melanoma , Solanaceae , Humanos , Antioxidantes/farmacología , Agua , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Melanoma/tratamiento farmacológico , Proliferación CelularRESUMEN
Drying rice in a single layer in a silo-dryer-aerator allows uniform drying. The objective of this study was to evaluate the physical, physicochemical, and morphological quality of rice grain cultivars (IRGA 424, BRS Pampeira, and Guri INTA) in the lower (initial time) and upper (final time) layers in a silo-dryer-aerator, employing single-layer loading at low temperatures, using the methods of near-infrared spectroscopy, X-ray diffraction analysis, scanning electron microscopy, and multivariate statistical analysis. Drying rice in silo-dryer-aerator attenuated the moisture diffusivity in the grains, minimizing its effects on the physical, physicochemical, and morphological properties of the grains. However, the physicochemical constituents and morphology of starch were preserved by the low drying temperatures, mainly in the lower layers throughout the 2-month drying. The rice grains of the Guri INTA and BRS Pampeira cultivars were the most resistant to drying and showed greater uniformity on the final quality.
RESUMEN
Diabetes mellitus (DM) and arterial hypertension are considered serious public health problems. Several studies have shown that oxidative stress is usually related to the onset of DM and hypertension, as well their associated complications. Moreover, the levels of some minerals are closely related to the pathophysiology of these diseases. Thus, in this study we aimed to evaluate the effect of metformin on the redox profile and mineral levels in the serum of patients with DM type 2 and hypertension. We also tested the effect of metformin on the viability and redox profile of peripheral blood mononuclear cells (PBMCs) for 24 h. As expected, we found that patients with type 2 DM and hypertension + type 2 DM had higher fasting glucose and triglyceride levels. As groundbreaking research, we found that both patients DM type 2 and Hypertension + DM type 2 had reduced myeloperoxidase (MPO) activity. On the other hand, the levels of total thiols (PSH) and vitamin C were increased. There was no statistical significance for the alterations in mineral levels. In addition, metformin treatment had no cytotoxic effect on PBMCs. Similarly, in patients of both groups, MPO activity was reduced and PSH levels were increased in PBMCs. We have shown that metformin is a drug with a protective effect in patients with DM type 2 against oxidative stress by reducing MPO activity and improving the levels of PSH and antioxidant defenders such as vitamin C. The results of in vitro assays support the antioxidant effect of metformin. Furthermore, we suggest studies to assess the biochemical mechanisms of metformin and how it can be used in a pharmacological therapeutic perspective against oxidative damage.
Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Metformina/farmacología , Metformina/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antioxidantes/uso terapéutico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Estudios Transversales , Leucocitos Mononucleares , Biomarcadores , Minerales , Ácido Ascórbico/uso terapéuticoRESUMEN
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10-6 mol L-1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10-6 S cm-1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10-3 mol H2O2 L-1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10-3 molH2O2L-1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.
Asunto(s)
Agua Potable , Metronidazol , Metronidazol/química , Peróxido de Hidrógeno/química , Hidrodinámica , Antibacterianos , OxidantesRESUMEN
Microglial activation has been associated to the physiopathology of neurodegenerative diseases, such as schizophrenia, and can occur during inflammation and oxidative stress. Pharmacological treatment is associated with severe side effects, and studies for use of plant extracts may offer alternatives with lower toxicity. Harpagophytum procumbens (HP) is a plant known for its anti-inflammatory properties. In the present study, we characterized the ethyl acetate fraction of HP (EAF HP) by ESI-ToF-MS and investigated the effects EAF HP in a lipopolysaccharide (LPS) induced inflammation model on microglial cells (BV-2 lineage). MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), DCFH-DA (2',7'-dichlorofluorescein diacetate) and cell cycle flow cytometer analysis were performed. In vivo was investigated the amphetamine-induced psychosis model through behavioral (locomotor and exploratory activities, stereotypies and working memory) and biochemical (DCFH-DA oxidation and protein thiols) parameters in cortex and striatum of mice. EAF HP reduced activation and proliferation of microglial cells in 48 h (300 µg/mL) and in 72 h after treatments (50-500 µg/mL). Reactive oxygen species levels were lower at the concentration of 100 µg/mL EAF HP. We detected a modulatory effect on the cell cycle, with reduction of cells in S and G2/M phases. In mice, the pre-treatment with EAF HP, for 7 days, protected against positive and cognitive symptoms, as well as stereotypies induced by amphetamine. No oxidative stress was observed in this amphetamine-induced model of psychosis. Such findings suggest that EAF HP can modulate the dopaminergic neurotransmission and be a promising adjuvant in the treatment of locomotor alterations, cognitive deficits, and neuropsychiatric disorders.
Asunto(s)
Harpagophytum , Animales , Ratones , Anfetamina/farmacología , Harpagophytum/química , Inflamación/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Extractos Vegetales/química , Estrés OxidativoRESUMEN
This study evaluated the combination of high-power ultrasound (HPU), micronized salt (MS), and low KCl levels as a strategy to produce reduced sodium Bologna-type sausages. Samples with 50% NaCl reduction were produced with regular salt (RS) or MS and 0.5% KCl. The sausages were sonicated for 0 or 27 min in an ultrasonic bath (25 kHz, 60% amplitude, normal mode, 20 °C) immediately after filling. The sodium reformulation strategy was effective in compensating for the defects in the emulsion stability and texture profile caused by the NaCl reduction. Besides, the combination of HPU, MS, and KCl did not cause major impacts on the evolution of pH, Eh, and TBARS values of the sausages during storage (21 days at 4 °C). The use of MS and KCl also allowed a reduction by 50% of the NaCl content (< 42% Na; Na/K ratio: 1.2 to 1.3) of the samples without affecting the salty taste, which was enhanced by the HPU treatment.
Asunto(s)
Productos de la Carne , Cloruro de Sodio , Cloruro de Sodio/química , Comportamiento del Consumidor , Productos de la Carne/análisis , Cloruro de Sodio Dietético , Sodio , GustoRESUMEN
The discovery of new natural additives from agro-industrial waste is considered an important research topic. This study investigated the feasibility of ultrasound-assisted extraction (UAE) of antioxidant compounds from corn stigma (CS) and the effect of independent variables (time and solid-solvent ratio) and their interaction in the extraction of CS. Results indicated that the UAE method increases the antioxidant activity and reduces the extraction time by 67%. Optimized conditions for the simultaneous extraction of antioxidants and polyphenols from CS were obtained using 5 min and a solid-solvent ratio of 0.05 g mL-¹. The CS extract obtained by UAE was characterized by ESI-ToF-MS and 27 phytochemicals were reported. The extract showed promising antifungal and antibacterial activities against 23 of the studied microorganisms. Therefore, the CS extract obtained by the UAE can be used as a source of bioactive and antimicrobial compounds for use as a functional ingredient in the food and pharmaceutical industry.
A descoberta de novos aditivos naturais a partir de resíduos agroindustriais é considerada um importante tópico de pesquisa. Este estudo teve como objetivo investigar a viabilidade da extração assistida por ultrassom (EAU) de compostos antioxidantes do estigma do milho (EM) e o efeito de variáveis independentes (tempo e relação sólido-solvente) e sua interação na extração de EM. Os resultados indicaram que a EUA aumenta a atividade antioxidante e reduz o tempo de extração em 67%. Condições otimizadas para a extração simultânea de antioxidantes e polifenóis do EM foram obtidas com 5 min e uma relação sólido-solvente de 0,05 g mL-¹. O extrato de EM obtido pela EUA foi caracterizado por ESI-ToF-MS e 27 fitoquímicos foram encontrados. O extrato apresentou atividades antifúngicas e antibacterianas promissoras contra 23 dos micro-organismos estudados. Portanto, o extrato de EM obtido pela extração assistida por ultrassom pode ser utilizado como fonte de compostos bioativos e antimicrobianos para uso como ingrediente funcional na indústria alimentícia e farmacêutica.
Asunto(s)
Zea mays/química , Aprovechamiento Integral de los Alimentos , Antibacterianos/análisis , Antifúngicos/análisis , Antioxidantes/análisis , UltrasonografíaRESUMEN
Cultivars and fertilization levels influence rice productivity and can be associated with grain quality. Thus, it is possible to make decisions regarding the choice of cultivars and application of fertilizer levels based on the type of milling, a necessary post-harvest process that may minimize the nutrient load in the grains and result in loss in quality. This study relates the physicochemical composition and morphological quality of brown and polished milled rice grains, cultivar types, and different levels of soil fertilization using near-infrared spectroscopy analysis, X-ray diffraction and scanning electron microscopy. Statistical tools were used to test the various treatments and identify the relationship between factors and variables. A high fertilization level is related to increasing crude protein composition and starch for cultivar IRGA 431 CL associated with polished rice. However, the combination of cultivar IRGA 424 RI and brown rice demonstrated a higher grain resistance, and different percentages of whole, chalky, and damaged rice. The correlation between ash × crude protein and starch × crude fiber was found to be positive for brown rice and negative for the polished rice. Further, an increase in starch content was inversely proportional to the ash content, whereas an increase in crude protein was inversely proportional to the low-fat content in milled rice. The crystalline characteristics of rice starch were preserved at high fertilization levels associated with polished grains that demonstrated high starch content. Polished grains, however, showed more pores and cavities, and consequently greater permeabilities in the surface. It is recommended that batches of grains produced from cultivar IRGA 431 CL with high levels of fertilization be subjected to polished rice milling to achieve high protein and starch quality. However, grains from cultivar IRGA 424 RI with high levels of fertilization are recommended for brown rice milling owing to the high percentage of physical defects observed.
Asunto(s)
Oryza , Fertilización , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja Corta , Difracción de Rayos XRESUMEN
BACKGROUND: Seafood present important advantages for human nutrition, but it can also accumulate high levels of toxic and potentially toxic elements. Culinary treatments could influence seafood chemical element content and element bioavailability. In this study, the influence of culinary treatments on the total concentration and on the bioavailability of Cd, Cr, Cu and Pb in shark, shrimp, squid, oyster, and scallop was assessed. METHODS: Boiling, frying, and sautéing with or without seasonings (salt, lemon juice and garlic) were evaluated. Total concentration and bioavailability of Cd, Cr, Cu and Pb in seafood after all these culinary treatments were compared with those in uncooked samples. Analytes were determined by triple-quadrupole inductively coupled plasma mass spectrometry (ICP-MS/MS). An alternative to express the results avoiding underestimated or overestimated values was proposed. RESULTS: The analytes concentration in seafood without culinary treatment varied from 0.0030⯵g g-1 (shrimp) to 0.338⯵g g-1 (oyster) for Cd; 0.010⯵g g-1 (squid) to 0.036⯵g g-1 (oyster) for Cr; 0.088⯵g g-1 (scallop) to 8.63⯵g g-1 (oyster) for Cu, and < 0.005⯵g g-1 (shrimp, squid and oyster) to 0.020⯵g g-1 (shark) for Pb. Only Cd (in scallop) was influenced by culinary treatments (reduction from 37 to 53 % after boiling, frying, and sautéing). Bioavailability percentage varied from 11% (oyster) for Cd; 18% (oyster) to 41% (shark) for Cr; 6% (shark) for Cu, and 8% (oyster) for Pb. Bioavailability percentage was not influenced by culinary treatments. CONCLUSION: Cadmium concentration was reduced in scallop after some culinary treatments (reduction o 37-53% after boiling, frying, and sautéing), but bioavailability percentage was not influenced. The employed analytical method was adequate for the purpose, presenting import results for food safety assessment about the influence of culinary treatments on metals concentration and bioavailability in seafood.
Asunto(s)
Cadmio/análisis , Cromo/análisis , Culinaria , Cobre/análisis , Plomo/análisis , Alimentos Marinos/análisis , Disponibilidad Biológica , Cadmio/farmacocinética , Cromo/farmacocinética , Cobre/farmacocinética , Contaminación de Alimentos/análisis , Humanos , Plomo/farmacocinéticaRESUMEN
In this work, the in-tip thermal infrared enthalpimetry (in-tip TIE) method is proposed for fast enthalpimetric analysis. In this method, the reactions inside the tips of a multichannel pipette were combined with temperature monitoring by an infrared camera. The filter paper was used inside the tips to retain reagents as solutions (wetted paper mode) or as solids (dried paper mode) to perform neutralization, redox, or precipitation reactions. The dried reagents inside the tips were obtained by oven drying a solution retained in the filter paper. The determination of the total acidity of the vinegar, ascorbic acid in vitamin C tablets, and chloride in soy sauces and saline inhalation solutions was performed as examples of the application of the proposed method. The agreement with reference methods ranged from 98 to 107%. The use of reagents dried inside the tip was feasible, leading to a simple aspiration of sample solution within the 12 tips of the pipette to perform a rapid analysis (1 min). Therefore, up to 720 measurements in 1 h were feasible for in-tip TIE over up to 12 measurements for the reference methods. Moreover, miniaturization reduced reagent consumption and residue generation. For example, for in-tip TIE, only 3.6 mL of residues was generated (n = 12) over 60-240 mL in reference methods (n = 3). Contrarily to other TIE methods, no microplates or stirring was required, opening possibilities for field analysis since the multichannel pipette and the infrared camera are both operated with batteries.
RESUMEN
A novel system for sample digestion was proposed based on microwave-induced combustion in disposable vessels (MIC-DV) for trace elements determination by inductively coupled plasma optical emission spectrometry (ICP-OES). As a proof of concept, botanical samples were digested by MIC-DV for further determination of Al, Cr, Cu, Fe, Mn, Sr, and Zn. The system consists of a quartz holder (a modified version of conventional MIC) placed inside disposable polypropylene (PP) vessels. The quartz holder was carefully designed to avoid excessive heating and damaging of the vessel walls. For the combustion, the PP vessels containing the quartz holder and sample were placed in a specially designed metallic rotor that prevents the heating of absorbing solution and allows the use of a domestic microwave oven for sample ignition. After combustion, the digestion vessel was shaken to ensure the analytes' absorption. The single-vessel principle was fulfilled, since no further dilution or liquid transfer was required and the same PP vessel used for digestion allowed solution storage until element determination. The influences of absorbing solution (diluted HNO3 and water) and sample mass (10 to 30 mg) were evaluated. By using the proposed MIC-DV system, low volumes of diluted absorbing solutions (5 mL of 1 mol L-1 HNO3) were possible, allowing the use of low reagent amounts and low energy consumption, since microwave irradiation is used only for sample ignition. The agreement with certified values ranged from 92 to 108% for all analytes, whereas the precision was below 15%. All of these advantages, combined with the use of low-cost disposable vessels and instrumentation, make MIC-DV suitable to be used for research and routine analysis.
RESUMEN
The aim of this study was to investigate the influence of hi-maize, inulin, and rice bran in the survival of Lactobacillus acidophilus LA-5 in pectin microparticles obtained by internal gelation and subjected to freeze-drying. For this, the development of a matrix capable of extending Lactobacillus acidophilus viability to develop new functional foods was emphasized. Microparticle size, encapsulation efficiency, probiotic survivability after gastrointestinal simulation, and storage stability were analyzed. The pectin + inulin encapsulation matrix presented the highest encapsulation efficiency (68.1%) compared to the other treatments. Microparticle sizes ranged from 166 ± 2 µm (pectin + hi-maize) to 345 ± 9 µm (pectin + inulin). The microparticles added from the different prebiotics showed better microorganism protection when compared to treatment without prebiotics, which presented greater viability in the gastrointestinal simulation. Under storage conditions of 25 °C and -18 °C, the microparticles containing hi-maize, inulin, and rice bran maintained the probiotic microorganisms viable for longer periods than the pectin microparticles. At 7 °C, the pectin + rice bran treatment stood out from the other treatments, as it was able to maintain probiotic stability during 120 days of storage.
Asunto(s)
Manipulación de Alimentos/métodos , Pectinas/química , Pectinas/metabolismo , Prebióticos , Probióticos/metabolismo , Emulsiones , Liofilización , Tamaño de la PartículaRESUMEN
The daily use of cosmetics may expose consumers to localized skin problems and systemic effects caused by absorption of chemical elements. The requirements for suitable quality control and maximum limits for toxic and potentially toxic elements in cosmetics have attracted the attention of the scientific community and of the official institutions around the world. Maximum limits for chemical elements in some cosmetics have been set, but there are disagreements between them. In the same context, many analytical methods have been proposed in the literature, but several challenges during the sample preparation and determination steps related to the high complexity of cosmetics' matrices composition still remain. It is extremely difficulty to establish suitable methods, free of interference, even using modern technology. In this review, methods for determining toxic and potentially toxic elements in cosmetics used for make-up on the lips and on the eye area, covering the period since 2000, are presented. Techniques enabling direct analysis and those requiring a sample preparation step prior to the analysis are also discussed. This review focused on cosmetics for make-up on the lips and on the eye area because the risks of percutaneous absorption and oral ingestion of toxic and potentially toxic elements is higher than in other body regions.
Asunto(s)
Cosméticos/efectos adversos , Cosméticos/análisis , Cosméticos/toxicidad , HumanosRESUMEN
RATIONALE: Bromine and iodine have important physiological functions; however, in inadequate concentration, they can also cause several physiological problems. Their mobility assessment in human organisms through biological sampling may help clarify some doubts related to metabolic routes, which are still not well elucidated. In this context, a suitable analytical method for this purpose should be developed. METHODS: An analytical method for determining ultratrace levels of bromine and iodine in human nail samples was developed. Inductively coupled plasma mass spectrometry (ICP-MS) using a conventional nebulization system was immediately chosen as the determination tool because of its powerful sensitivity and selectivity. Sample preparation methods including microwave-induced combustion (MIC), microwave-assisted extraction, and microwave-assisted digestion were evaluated. The compatibility of the final solutions with ICP-MS analysis was considered while the method was developed. RESULTS: MIC was chosen as the most suitable method for the sample preparation for determining the levels of bromine and iodine in human nail samples using ICP-MS. Unlike other sample preparation methods, this one fully eliminated interferences related to the carbon content and memory effects. Sample masses up to 100 mg were efficiently digested, and the analytes were quantitatively absorbed using only 50 mmol L-1 NH4 OH solution. Recoveries ranged from 93% to 102%, and the relative standard deviation was < 8%. CONCLUSIONS: The proposed analytical method presents important characteristics for routine analysis. It allows ultratrace determination even when low sample masses are used because of the low blank values, reduced volume of reagents, and powerful detectability using ICP-MS.
Asunto(s)
Bromo/análisis , Yodo/análisis , Espectrometría de Masas/métodos , Uñas/química , Bromo/aislamiento & purificación , Estudios de Factibilidad , Humanos , Yodo/aislamiento & purificación , Límite de Detección , MicroondasRESUMEN
A comprehensive study was developed showing the feasibility of determination of rare earth elements (REE) in low concentration in crude oil by using direct sampling electrothermal vaporization system coupled to inductively coupled plasma mass spectrometry (ETV-ICP-MS). The effect of organic modifier on the REE signal was evaluated and the use of 6 mg of citric acid allowed calibration using aqueous reference solutions (selected pyrolysis and vaporization temperatures were 700 and 2200 °C, respectively). Because of the facility of REE in forming refractory compounds inside the graphite furnace during the heating step, the use of a modifier gas (Freon R-12, 3.0 mL min-1) was necessary to allow quantitative vaporization of these elements. A flow rate of 0.40 L min-1 was selected for both bypass and carrier gases. Under optimized conditions, the influence of sample mass was evaluated, and even using a relatively high mass of crude oil (up to 18 mg), accurate results were obtained. The accuracy was evaluated by the comparison of results by ETV-ICP-MS with those obtained by ICP-MS with ultrasonic nebulizer (USN) after high-pressure microwave-assisted wet digestion (MAWD) and microwave-induced combustion (MIC) and no statistical difference was observed between the results. The limits of quantification for REE by ETV-ICP-MS were lower (0.02-0.8 ng g-1) than those obtained by USN-ICP-MS after MAWD and MIC (0.6-5.1 ng g-1). Negligible blank values and relative standard deviations lower than 12% show the feasibility of the proposed ETV-ICP-MS method for routine analysis of crude oil.
RESUMEN
The initial objective of the study was to evaluate different operation modes (sweep and normal) and frequencies (25 and 130â¯kHz) of ultrasound in pre-chilling of breast chicken cylinders (BCC) immersed in water at 10⯰C during 10â¯min. The second objective was to study the effect of the immersion time (5, 10, 15, 20, and 30â¯min) using the best operation mode and frequency obtained in the pre-chilling of the BCC in water at 10⯰C. Pre-chilling was evaluated in both stages by infrared thermography, and the percentages of water absorption were determined in the second stage. The application of US at 130â¯kHz and normal operation mode provided a reduction of temperature on the surface of BBC higher (≈19.6%) than untreated samples. Also, compared to control, the US-treated samples in these conditions presented a more uniform cooling rate (≈22.3%) and higher water absorption (≈113%).
Asunto(s)
Pollos , Frío , Almacenamiento de Alimentos/métodos , Carne/análisis , Sonicación/métodos , Absorción Fisicoquímica , Animales , Carne/efectos de la radiación , Termografía , Agua/químicaRESUMEN
Manganese (Mn)-containing dithiocarbamates such as Mancozeb (MZ) have been shown to induce oxidative stress-related toxicity in rodents and humans. However, little is known about the neurotoxic effects induced by MZ in fish. In this study, carp (Cyprinus carpio) were exposed to non-lethal waterborne concentrations of MZ, and oxidative stress parameters as well as metal accumulation in fish brains were evaluated. The experimental groups were as follows: control, MZ 5 mg/L, and MZ 10 mg/L. Fish were exposed for 7 days, and then brain was removed and prepared for subsequent analysis of antioxidant enzymes, reactive oxygen species (ROS), and expression of Nrf2 and phosphoNrf2. In parallel, manganese (Mn) levels were evaluated in blood and brain tissues. Mn levels were significantly increased in blood and brain of MZ-exposed carps. In addition, a concentration-dependent increase (p < 0.05) in ROS levels was observed in parallel to increments (p < 0.05) in the activity of major antioxidant enzymes, such as GPx, GR, and GST. On the other hand, significant decreases (p < 0.05) in CAT and SOD activities were observed. The expression of total and phosphorylated forms of Nrf2 was significantly (p < 0.05) upregulated in the brain of carps exposed to Mz when compared to the control, indicating an activation of the Nrf2 antioxidant pathway. Our study showed for the first time the activation of the Nrf2/ARE pathway and bioaccumulation of Mn induced by MZ exposure in fish species, highlighting important mechanisms of action and its toxicological impacts to aquatic organisms.