Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21266670

RESUMEN

The host epigenetic landscape is rapidly changed during SARS-CoV-2 infection and evidence suggests that severe COVID-19 is associated with durable scars to the epigenome. Specifically, aberrant DNA methylation changes in immune cells and alterations to epigenetic clocks in blood relate to severe COVID-19. However, a longitudinal assessment of DNA methylation states and epigenetic clocks in blood from healthy individuals prior to and following test-confirmed non-hospitalized COVID-19 has not been performed. Moreover, the impact of mRNA COVID-19 vaccines upon the host epigenome remains understudied. Here, we first examined DNA methylation states in blood of 21 participants prior to and following test confirmed COVID-19 diagnosis at a median timeframe of 8.35 weeks. 261 CpGs were identified as differentially methylated following COVID-19 diagnosis in blood at an FDR adjusted P value <0.05. These CpGs were enriched in gene body and northern and southern shelf regions of genes involved in metabolic pathways. Integrative analysis revealed overlap among genes identified in transcriptional SARS-CoV-2 infection datasets. Principal component-based epigenetic clock estimates of PhenoAge and GrimAge significantly increased in people over 50 following infection by an average of 2.1 and 0.84 years. In contrast, PCPhenoAge significantly decreased in people under 50 following infection by an average of 2.06 years. This observed divergence in epigenetic clocks following COVID-19 was related to age and immune cell-type compositional changes in CD4+ T cells, B cells, granulocytes, plasmablasts, exhausted T cells, and naive T cells. Complementary longitudinal epigenetic clock analyses of 36 participants prior to and following Pfizer and Moderna mRNA-based COVID-19 vaccination revealed vaccination significantly reduced principal component-based Horvath epigenetic clock estimates in people over 50 by an average of 3.91 years for those that received Moderna. This reduction in epigenetic clock estimates was significantly related to chronological age and immune cell-type compositional changes in B cells and plasmablasts pre- and post-vaccination. These findings suggest the potential utility of epigenetic clocks as a biomarker of COVID-19 vaccine responses. Future research will need to unravel the significance and durability of short-term changes in epigenetic age related to COVID-19 exposure and mRNA vaccination.

2.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21249604

RESUMEN

Most deaths from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection occur in older subjects. We assessed age effects and clinical utility of serum SARS-CoV-2 immunoglobulin G (IgG), immunoglobulin M (IgM), and neutralizing antibodies and serum inflammatory markers. Serum IgG, IgM, and neutralizing antibody levels were measured using chemiluminescence assays from Diazyme (Poway, CA), while serum interleukin-6 (IL-6), C reactive protein (CRP), and ferritin were measured with immunoassays obtained from Roche (Indianapolis, IN). In 79,005 subjects, IgG and IgM levels were positive ([≥]1.0 arbitrary units [AU]/mL) in 5.29% and 3.25% of subjects, respectively. In antibody positive subjects, median IgG levels were 3.93 AU/mL if <45 years of age, 10.18 AU/mL if 45-64 years of age, and 10.85 AU/mL if [≥]65 years of age (p<0.0001). In SARS-CoV-2 RNA positive cases, family members and exposed subjects (n=1,111), antibody testing was found to be valuable for case finding, and persistent IgM levels were associated with chronic symptoms. In non-hospitalized and hospitalized subjects assessed for SARS-CoV-2 RNA (n=278), median IgG levels in AU/mL were 0.05 in negative subjects (n=100), 14.83 in positive outpatients (n=129), and 30.61 in positive hospitalized patients (n=49, p<0.0001). Neutralizing antibody levels correlated significantly with IgG (r=0.875; p<0.0001). Two or more of the criteria of IL-6 [≥]10 pg/mL, CRP [≥]10 mg/L, and/or IgM >1.0 AU/mL occurred in 97.7% of inpatients versus 1.8% of outpatients (>50-fold relative risk, C statistic 0.986, p<0.0001). Our data indicate that: 1) IgG levels are significantly higher in positive older subjects, possibly to compensate for decreased cellular immunity with aging; 2) IgG levels are important for case finding in family clusters; 3) IgG levels are significantly correlated with neutralizing antibody levels; 4) persistently elevated IgM levels are associated with chronic disease; and 5) markedly elevated IL-6, hs-CRP, and/or positive IgM accurately identify SARS-CoV-2 RNA positive subjects requiring hospitalization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA