Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Intervalo de año de publicación
1.
Physiol Plant ; 176(4): e14492, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166265

RESUMEN

Genomic DNA methylation patterns play a crucial role in the developmental processes of plants and mammals. In this study, we aimed to investigate the significant effects of epigenetic mechanisms on the development of soybean seedlings and metabolic pathways. Our analyses show that 5-azaC-treatment affects radicle development from two Days After Imbibition (DAI), as well as both shoot and root development. We examined the expression levels of key genes related to DNA methylation and demethylation pathways, such as DRM2, which encodes RNA-directed DNA Methylation (RdDM) pathway, SAM synthase, responsible for methyl group donation, and ROS1, a DNA demethylase. In treated seedling roots, we observed an increase in DRM2 expression and a decrease in ROS1 expression. Additionally, 5-azaC treatment altered protein accumulation, indicating epigenetic control over stress response while inhibiting nitrogen assimilation, urea cycle, and glycolysis-related proteins. Furthermore, it influenced the levels of various phytohormones and metabolites crucial for seedling growth, such as ABA, IAA, ethylene, polyamines (PUT and Cad), and free amino acids, suggesting that epigenetic changes may shape soybean responses to pathogens, abiotic stress, and nutrient absorption. Our results assist in understanding how hypomethylation shapes soybean responses to pathogens, abiotic stress, and nutrient absorption crucial for seedling growth, suggesting that the plant's assimilation of carbon and nitrogen, along with hormone pathways, may be influenced by epigenetic changes.


Asunto(s)
Metilación de ADN , Glycine max , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas , Metilación de ADN/genética , Glycine max/genética , Glycine max/metabolismo , Glycine max/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Epigénesis Genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
2.
J Exp Bot ; 75(11): 3368-3387, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38492237

RESUMEN

During the last decade, knowledge about BBX proteins has greatly increased. Genome-wide studies identified the BBX gene family in several ornamental, industry, and food crops; however, reports regarding the role of these genes as regulators of agronomically important traits are scarce. Here, by phenotyping a knockout mutant, we performed a comprehensive functional characterization of the tomato locus Solyc12g089240, hereafter called SlBBX20. The data revealed the encoded protein as a positive regulator of light signaling affecting several physiological processes during the life span of plants. Through inhibition of PHYTOCHROME INTERACTING FACTOR 4 (SlPIF4)-auxin crosstalk, SlBBX20 regulates photomorphogenesis. Later in development, it controls the balance between cell division and expansion to guarantee correct vegetative and reproductive development. In fruits, SlBBX20 is transcriptionally induced by the master transcription factor RIPENING INHIBITOR (SlRIN) and, together with ELONGATED HYPOCOTYL 5 (SlHY5), up-regulates flavonoid biosynthetic genes. Finally, SlBBX20 promotes the accumulation of steroidal glycoalkaloids and attenuates Botrytis cinerea infection. This work clearly demonstrates that BBX proteins are multilayer regulators of plant physiology because they affect not only multiple processes during plant development but they also regulate other genes at the transcriptional and post-translational levels.


Asunto(s)
Frutas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Frutas/crecimiento & desarrollo , Frutas/genética , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
3.
Plant Cell Rep ; 42(1): 137-152, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36348064

RESUMEN

KEY MESSAGE: The overexpression of the soybean GmEXPA1 gene reduces plant susceptibility to M. incognita by the increase of root lignification. Plant expansins are enzymes that act in a pH-dependent manner in the plant cell wall loosening and are associated with improved tolerance or resistance to abiotic or biotic stresses. Plant-parasitic nematodes (PPN) can alter the expression profile of several expansin genes in infected root cells. Studies have shown that overexpression or downregulation of particular expansin genes can reduce plant susceptibility to PPNs. Root-knot nematodes (RKN) are obligate sedentary endoparasites of the genus Meloidogyne spp. of which M. incognita is one of the most reported species. Herein, using a transcriptome dataset and real-time PCR assays were identified an expansin A gene (GmEXPA1; Glyma.02G109100) that is upregulated in the soybean nematode-resistant genotype PI595099 compared to the susceptible cultivar BRS133 during plant parasitism by M. incognita. To understand the role of the GmEXPA1 gene during the interaction between soybean plant and M. incognita were generated stable A. thaliana and N. tabacum transgenic lines. Remarkably, both A. thaliana and N. tabacum transgenic lines overexpressing the GmEXPA1 gene showed reduced susceptibility to M. incognita. Furthermore, plant growth, biomass accumulation, and seed yield were not affected in these transgenic lines. Interestingly, significant upregulation of the NtACC oxidase and NtEFE26 genes, involved in ethylene biosynthesis, and NtCCR and Nt4CL genes, involved in lignin biosynthesis, was observed in roots of the N. tabacum transgenic lines, which also showed higher lignin content. These data suggested a possible link between GmEXPA1 gene expression and increased lignification of the root cell wall. Therefore, these data support that engineering of the GmEXPA1 gene in soybean offers a powerful biotechnology tool to assist in RKN management.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Tylenchoidea/genética , Arabidopsis/genética , Lignina , Transcriptoma
4.
Planta ; 256(4): 83, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36112244

RESUMEN

MAIN CONCLUSION: The overexpression of the GmGlb1-1 gene reduces plant susceptibility to Meloidogyne incognita. Non-symbiotic globin class #1 (Glb1) genes are expressed in different plant organs, have a high affinity for oxygen, and are related to nitric oxide (NO) turnover. Previous studies showed that soybean Glb1 genes are upregulated in soybean plants under flooding conditions. Herein, the GmGlb1-1 gene was identified in soybean as being upregulated in the nematode-resistant genotype PI595099 compared to the nematode-susceptible cultivar BRS133 during plant parasitism by Meloidogyne incognita. The Arabidopsis thaliana and Nicotiana tabacum transgenic lines overexpressing the GmGlb1-1 gene showed reduced susceptibility to M. incognita. Consistently, gall morphology data indicated that pJ2 nematodes that infected the transgenic lines showed developmental alterations and delayed parasitism progress. Although no significant changes in biomass and seed yield were detected, the transgenic lines showed an elongated, etiolation-like growth under well-irrigation, and also developed more axillary roots under flooding conditions. In addition, transgenic lines showed upregulation of some important genes involved in plant defense response to oxidative stress. In agreement, higher hydrogen peroxide accumulation and reduced activity of reactive oxygen species (ROS) detoxification enzymes were also observed in these transgenic lines. Thus, based on our data and previous studies, it was hypothesized that constitutive overexpression of the GmGlb1-1 gene can interfere in the dynamics of ROS production and NO scavenging, enhancing the acquired systemic acclimation to biotic and abiotic stresses, and improving the cellular homeostasis. Therefore, these collective data suggest that ectopic or nematode-induced overexpression, or enhanced expression of the GmGlb1-1 gene using CRISPR/dCas9 offers great potential for application in commercial soybean cultivars aiming to reduce plant susceptibility to M. incognita.


Asunto(s)
Arabidopsis , Tylenchoidea , Animales , Globinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Glycine max/genética , Glycine max/metabolismo , Tylenchoidea/genética
5.
Plant Mol Biol ; 110(3): 253-268, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35798935

RESUMEN

KEY MESSAGE: SlBBX28 is a positive regulator of auxin metabolism and signaling, affecting plant growth and flower number in tomato B-box domain-containing proteins (BBXs) comprise a family of transcription factors that regulate several processes, such as photomorphogenesis, flowering, and stress responses. For this reason, attention is being directed toward the functional characterization of these proteins, although knowledge in species other than Arabidopsis thaliana remains scarce. Particularly in the tomato, Solanum lycopersicum, only three out of 31 SlBBX proteins have been functionally characterized to date. To deepen the understanding of the role of these proteins in tomato plant development and yield, SlBBX28, a light-responsive gene, was constitutively silenced, resulting in plants with smaller leaves and fewer flowers per inflorescence. Moreover, SlBBX28 knockdown reduced hypocotyl elongation in darkness-grown tomato. Analyses of auxin content and responsiveness revealed that SlBBX28 promotes auxin-mediated responses. Altogether, the data revealed that SlBBX28 promotes auxin production and signaling, ultimately leading to proper hypocotyl elongation, leaf expansion, and inflorescence development, which are crucial traits determining tomato yield.


Asunto(s)
Arabidopsis , Solanum lycopersicum , Arabidopsis/metabolismo , Flores , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/metabolismo , Desarrollo de la Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
Front Plant Sci ; 13: 902068, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35845673

RESUMEN

Cysteine S-nitrosation is a redox-based post-translational modification that mediates nitric oxide (NO) regulation of various aspects of plant growth, development and stress responses. Despite its importance, studies exploring protein signaling pathways that are regulated by S-nitrosation during somatic embryogenesis have not been performed. In the present study, endogenous cysteine S-nitrosation site and S-nitrosated proteins were identified by iodo-TMT labeling during somatic embryogenesis in Brazilian pine, an endangered native conifer of South America. In addition, endogenous -S-nitrosothiol (SNO) levels and S-nitrosoglutathione reductase (GSNOR) activity were determined in cell lines with contrasting embryogenic potential. Overall, we identified an array of proteins associated with a large variety of biological processes and molecular functions with some of them already described as important for somatic embryogenesis (Class IV chitinase, pyruvate dehydrogenase E1 and dehydroascorbate reductase). In total, our S-nitrosoproteome analyses identified 18 endogenously S-nitrosated proteins and 50 in vitro S-nitrosated proteins (after GSNO treatment) during cell culture proliferation and embryo development. Furthermore, SNO levels and GSNOR activity were increased during embryo formation. These findings expand our understanding of the Brazilian pine proteome and shed novel insights into the potential use of pharmacological manipulation of NO levels by using NO inhibitors and donors during somatic embryogenesis.

7.
Free Radic Res ; 55(3): 255-266, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33961525

RESUMEN

Araucaria angustifolia is classified as a critically endangered species by the International Union for Conservation of Nature. This threat is worsened by the inefficiency of methods for ex-situ conservation and propagation. In conifers, somatic embryogenesis (SE) associated with cryopreservation is an efficient method to achieve germplasm conservation and mass clonal propagation. However, the efficiency of SE is highly dependent on genotype responsivity to the artificial stimulus used in vitro during cell line proliferation and later during somatic embryo development. In this study, we evaluated the activity of antioxidant enzymes and characterized mitochondrial functions during the proliferation of embryogenic cells of A. angustifolia responsive (SE1) and non-responsive (SE6) to the development of somatic embryos. The activities of the antioxidant enzymes GR (EC 1.6.4.2), MDHAR (EC 1.6.5.4), and POX (EC 1.11.1.7) were increased in SE1 culture, while in SE6 culture, only the activity of DHAR (EC 1.8.5.1) was significantly higher. Additionally, SE6 culture presented a higher number of mitochondria, which agreed with the increased rate of oxygen consumption compared to responsive SE1 culture; however, the mitochondrial volume was lower. Although the ATP levels did not differ, the NAD(P)H levels were higher in SE1 cells. NDs, AOX, and UCP were less active in responsive SE1 than in non-responsive cells. Our results show significant differences between SE1 and SE6 embryogenic cells regarding mitochondrial functions and antioxidant enzyme activities, which may be intrinsic to the in vitro proliferation phase of both cell lines, possessing a crucial role for the induction of in vitro maturation process.


Asunto(s)
Antioxidantes/uso terapéutico , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Tracheophyta/crecimiento & desarrollo , Antioxidantes/farmacología , Línea Celular , Humanos
8.
Plant Physiol Biochem ; 165: 80-93, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34034163

RESUMEN

The Coffea arabica HB12 gene (CaHB12), which encodes a transcription factor belonging to the HD-Zip I subfamily, is upregulated under drought, and its constitutive overexpression (35S:CaHB12OX) improves the Arabidopsis thaliana tolerance to drought and salinity stresses. Herein, we generated transgenic cotton events constitutively overexpressing the CaHB12 gene, characterized these events based on their increased tolerance to water deficit, and exploited the gene expression level from the CaHB12 network. The segregating events Ev8.29.1, Ev8.90.1, and Ev23.36.1 showed higher photosynthetic yield and higher water use efficiency under severe water deficit and permanent wilting point conditions compared to wild-type plants. Under well-irrigated conditions, these three promising transformed events showed an equivalent level of Abscisic acid (ABA) and decreased Indole-3-acetic acid (IAA) accumulation, and a higher putrescine/(spermidine + spermine) ratio in leaf tissues was found in the progenies of at least two transgenic cotton events compared to non-transgenic plants. In addition, genes that are considered as modulated in the A. thaliana 35S:CaHB12OX line were also shown to be modulated in several transgenic cotton events maintained under field capacity conditions. The upregulation of GhPP2C and GhSnRK2 in transgenic cotton events maintained under permanent wilting point conditions suggested that CaHB12 might act enhancing the ABA-dependent pathway. All these data confirmed that CaHB12 overexpression improved the tolerance to water deficit, and the transcriptional modulation of genes related to the ABA signaling pathway or downstream genes might enhance the defense responses to drought. The observed decrease in IAA levels indicates that CaHB12 overexpression can prevent leaf abscission in plants under or after stress. Thus, our findings provide new insights on CaHB12 gene and identify several promising cotton events for conducting field trials on water deficit tolerance and agronomic performance.


Asunto(s)
Sequías , Gossypium , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Gossypium/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Sci Rep ; 10(1): 10543, 2020 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-32601369

RESUMEN

Tegumentary leishmaniasis (TL) is a parasitic disease that can result in wide spectrum clinical manifestations. It is necessary to understand host and parasite determinants of clinical outcomes to identify novel therapeutic targets. Previous studies have indicated that the polyamine biosynthetic pathway is critical for Leishmania growth and survival. Despite its importance, expression of the such pathway has not been previously investigated in TL patients. We performed an exploratory analysis employing Systems Biology tools to compare circulating polyamines and amino acid concentration as well as polyamine pathway gene expression in cutaneous lesions patients presenting with distinct TL disease presentations. Diffuse cutaneous leishmaniasis (DCL) was associated with higher concentrations of amino acids, polyamines and its substrate transporters than mucosal cutaneous leishmaniasis or localized cutaneous leishmaniasis. In addition, the RNA expression of polyamine-related genes of patients lesions from two separate cohorts demonstrated that differential activation of this pathway is associated with parasite loads and able to discriminate the clinical spectrum of TL. Taken together, our findings highlight a new aspect of DCL immunopathogenesis indicating that the polyamine pathway may be explored as a novel therapeutic target to control disease burden.


Asunto(s)
Aminoácidos/metabolismo , Vías Biosintéticas/fisiología , Leishmaniasis Cutánea Difusa/metabolismo , Poliaminas/metabolismo , Piel/metabolismo , Adulto , Aminoácidos/sangre , Estudios Transversales , Femenino , Humanos , Masculino , Membrana Mucosa/metabolismo , Poliaminas/sangre
10.
Front Plant Sci ; 11: 617020, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33469464

RESUMEN

Plant lignocellulosic biomass, mostly composed of polysaccharide-rich secondary cell walls (SCWs), provides fermentable sugars that may be used to produce biofuels and biomaterials. However, the complex chemical composition and physical structure of SCWs hinder efficient processing of plant biomass. Understanding the molecular mechanisms underlying SCW deposition is, thus, essential to optimize bioenergy feedstocks. Here, we establish a xylogenic culture as a model system to study SCW deposition in sugarcane; the first of its kind in a C4 grass species. We used auxin and brassinolide to differentiate sugarcane suspension cells into tracheary elements, which showed metaxylem-like reticulate or pitted SCW patterning. The differentiation led to increased lignin levels, mainly caused by S-lignin units, and a rise in p-coumarate, leading to increased p-coumarate:ferulate ratios. RNAseq analysis revealed massive transcriptional reprogramming during differentiation, with upregulation of genes associated with cell wall biogenesis and phenylpropanoid metabolism and downregulation of genes related to cell division and primary metabolism. To better understand the differentiation process, we constructed regulatory networks of transcription factors and SCW-related genes based on co-expression analyses. Accordingly, we found multiple regulatory modules that may underpin SCW deposition in sugarcane. Our results provide important insights and resources to identify biotechnological strategies for sugarcane biomass optimization.

11.
Plant Cell Physiol ; 59(5): 1084-1098, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29490084

RESUMEN

The mechanisms that control polyamine (PA) metabolism in plant cell lines with different embryogenic potential are not well understood. This study involved the use of two Araucaria angustifolia cell lines, one of which was defined as being blocked, in that the cells were incapable of developing somatic embryos, and the other as being responsive, as the cells could generate somatic embryos. Cellular PA metabolism was modulated by using 5 mM arginine (Arg) or ornithine (Orn) at two time points during cell growth. Two days after subculturing with Arg, an increase in citrulline (Cit) content was observed, followed by a higher expression of genes related to PA catabolism in the responsive cell line; whereas, in the blocked cell line, we only observed an accumulation of PAs. After 14 d, metabolism was directed towards putrescine accumulation in both cell lines. Exogenous Arg and Orn not only caused a change in cellular contents of PAs, but also altered the abundance of a broader spectrum of amino acids. Specifically, Cit was the predominant amino acid. We also noted changes in the expression of genes related to PA biosynthesis and catabolism. These results indicate that Arg and Orn act as regulators of both biosynthetic and catabolic PA metabolites; however, we suggest that they have distinct roles associated with embryogenic potential of the cells.


Asunto(s)
Aminoácidos/metabolismo , Arginina/metabolismo , Ornitina/metabolismo , Pinaceae/embriología , Pinaceae/metabolismo , Poliaminas/metabolismo , Vías Biosintéticas/genética , Línea Celular , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ornitina Descarboxilasa/metabolismo , Coloración y Etiquetado
12.
J Proteomics ; 130: 180-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26435419

RESUMEN

GeLC­MS/MS based label free proteomic profiling was used in the large scale identification and quantification of proteins from Brazilian pine (Araucaria angustifolia) embryogenic cell (EC) lines that showed different propensities to form somatic embryos. Using a predicted protein sequence database that was derived from A. angustifolia RNA-Seq data, 2398 non-redundant proteins were identified. The log2 of the spectral count values of 858 proteins of these proteins showed a normal distribution, and were used for statistical analysis. Statistical tests indicated that 106 proteins were significantly differentially abundant between the two EC lines, and that 35 were more abundant in the responsive genotype (EC line SE1) and 71 were more abundant in the blocked genotype (EC line SE6). An increase in the abundance of proteins related to cell defense, anti-oxidative stress responses, and storage reserve deposition was observed in SE1. Moreover, in SE6 we observed an increased abundance of two proteins associated with seed development during the embryogenic cell proliferation stage, which we suggest is associated with genotypes showing a low responsiveness to embryo formation. Differences in protein abundance between the EC lines are discussed in terms of carbohydrate metabolism, cell division, defense response, gene expression, and response to reactive oxygen species.


Asunto(s)
Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Tracheophyta/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Bases de Datos de Proteínas , Electroforesis en Gel Bidimensional , Regulación de la Expresión Génica , Genotipo , Técnicas de Embriogénesis Somática de Plantas , ARN/química , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masas en Tándem , Tripsina/química
13.
PLoS One ; 10(6): e0127803, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26035435

RESUMEN

The development of somatic cells in to embryogenic cells occurs in several stages and ends in somatic embryo formation, though most of these biochemical and molecular changes have yet to be elucidated. Somatic embryogenesis coupled with genetic transformation could be a biotechnological tool to improve potential crop yields potential in sugarcane cultivars. The objective of this study was to observe somatic embryo development and to identify differentially expressed proteins in embryogenic (E) and non-embryogenic (NE) callus during maturation treatment. E and NE callus were cultured on maturation culture medium supplemented with different concentrations (0.0, 0.75, 1.5 and 2.0 g L(-1)) of activated charcoal (AC). Somatic embryo formation and differential protein expression were evaluated at days 0 and 21 using shotgun proteomic analyses. Treatment with 1.5 g L(-1) AC resulted in higher somatic embryo maturation rates (158 somatic embryos in 14 days) in E callus but has no effect in NE callus. A total of 752 co-expressed proteins were identified through the SUCEST (The Sugarcane EST Project), including many housekeeping proteins. E callus showed 65 exclusive proteins on day 0, including dehydrogenase, desiccation-related protein, callose synthase 1 and nitric oxide synthase. After 21 days on maturation treatment, 14 exclusive proteins were identified in E callus, including catalase and secreted protein. NE callus showed 23 exclusive proteins on day 0 and 10 exclusive proteins after 21 days on maturation treatment, including many proteins related to protein degradation. The induction of maturation leads to somatic embryo development, which likely depends on the expression of specific proteins throughout the process, as seen in E callus under maturation treatment. On the other hand, some exclusive proteins can also specifically prevent of somatic embryos development, as seen in the NE callus.


Asunto(s)
Proteínas de Plantas/metabolismo , Técnicas de Embriogénesis Somática de Plantas/métodos , Proteoma/análisis , Proteómica/métodos , Saccharum/embriología , Saccharum/metabolismo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
14.
Physiol Plant ; 148(1): 121-32, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22998677

RESUMEN

Polyamines (PAs) are abundant polycationic compounds involved in many physiological processes in plants, including somatic embryogenesis. This study investigates the role of PAs on cellular growth and structure of pro-embryogenic masses (PEMs), endogenous PA and proton pump activities in embryogenic suspension cultures of Araucaria angustifolia. The embryogenic suspension cultures were incubated with putrescine (Put), spermidine (Spd), spermine (Spm) and the inhibitor methylglyoxal-bis(guanylhydrazone) (MGBG), respectively (1 mM). After 24 h and 21 days, the cellular growth and structure of PEMs, endogenous PA contents and proton pump activities were analyzed. The addition of Spm reduced the cellular growth and promoted the development of PEMs in embryogenic cultures, which could be associated with a reduction in the activities of proton pumps, such as H(+) -ATPase P- and V-types and H(+) -PPases, and alterations in the endogenous PA contents. Spm significantly affected the physiology of the A. angustifolia somatic embryogenesis suspension, as it potentially affects cellular growth and structure of PEMs through the modulation of proton pump activities. This work demonstrates the involvement of exogenous PAs in the modulation of cellular growth and structure of PEMs, endogenous PA levels and proton pump activities during somatic embryogenesis. To our knowledge, this study is the first to report a relationship between PAs and proton pump activities in these processes. The results obtained in this study offer new perspectives for studies addressing the role of PAs and proton pump on somatic embryogenesis in this species.


Asunto(s)
Técnicas de Embriogénesis Somática de Plantas , Poliaminas/metabolismo , Bombas de Protones/metabolismo , Tracheophyta/embriología , Tracheophyta/metabolismo , Tracheophyta/citología
15.
Plant Sci ; 195: 80-7, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22921001

RESUMEN

In this work, it was observed a straight relationship between the manipulation of the reduced glutathione (GSH)/glutathione disulfide (GSSG) ratio, nitric oxide emission and quality and number of early somatic embryos in Araucaria angustifolia, a Brazilian endangered native conifer. In low concentrations GSH (0.01 and 0.1mM) is a potential NO scavenger in the culture medium. Furthermore, it can increase the number of early SE formed in cell suspension culture media in a few days. However, the maintenance in this low redox state lead to a loss of early somatic embryos polarization. In gelled culture medium, high levels of GSH (5mM) allows the development of globular embryos presenting a high NO emission on embryo apex, stressing its importance in the differentiation and cell division. Taken together these results indicate that the modification of the embryogenic cultures redox state might be an effective strategy to develop more efficient embryogenic systems in A. angustifolia.


Asunto(s)
Disulfuro de Glutatión/metabolismo , Glutatión/metabolismo , Óxido Nítrico/metabolismo , Desarrollo de la Planta , Técnicas de Embriogénesis Somática de Plantas/métodos , Semillas/crecimiento & desarrollo , Tracheophyta/embriología , Brasil , División Celular , Especies en Peligro de Extinción , Oxidación-Reducción , Semillas/metabolismo , Tracheophyta/metabolismo
16.
World J Microbiol Biotechnol ; 28(4): 1593-603, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22805941

RESUMEN

Eighteen aerobic endospore forming strains were isolated from sugarcane rhizosphere in N-free medium. A phenotypic description and analysis of the 5' end hypervariable region sequences of 16S rRNA revealed a high diversity of Bacillus and related genera. Isolates were identified, and four genera were obtained: seven strains belonged to Bacillus (Bacillaceae family), four belonged to Paenibacillus, six belonged to Brevibacillus and one strain was identified as Cohnella (Paenibacillaceae family). Four Brevibacillus strains showed in vitro inhibitory activity against plant pathogens fungi Curvularia and Fusarium. Seventy-four percent of the isolated bacteria grew on pectin as the only carbon source, showing polygalacturonase activity. Pectate lyase activity was detected for the first time in a Brevibacillus genus strain. All isolates showed endoglucanase activity. Calcium phosphate solubilisation was positive in 83.3% of the isolates, with higher values than those reported for Bacillus inorganic phosphate solubilising strains. High ethylene plant hormone secretion in the culture medium was detected in 22% of the bacteria. This is the first report of ethylene secretion in Paenibacillaceae isolates. Indole-3-acetic acid production was found in a Brevibacillus genus isolate. It was reported for the first time the presence of Cohnella genus strain on sugarcane rhizosphere bearing plant growth promoting traits. The sugarcane isolate Brevibacillus B65 was identified as a plant growth inoculant because it showed wider spectra of plant stimulation capabilities, including an antifungal effect, extracellular hydrolases secretion, inorganic phosphate solubilisation and plant hormone liberation. In this work, sugarcane was shown to be a suitable niche for finding aerobic endospore forming 'Bacilli' with agriculture biotechnological purposes.


Asunto(s)
Antibiosis , Bacillales/aislamiento & purificación , Bacillales/fisiología , Rizosfera , Saccharum/microbiología , Microbiología del Suelo , Agricultura/métodos , Bacillales/clasificación , Bacillales/genética , Técnicas de Tipificación Bacteriana , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Hongos/crecimiento & desarrollo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
17.
Genet Mol Biol ; 35(1): 172-81, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22481892

RESUMEN

Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz., ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semi-quantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.

18.
Genet. mol. biol ; Genet. mol. biol;35(1): 172-181, 2012. ilus, tab
Artículo en Inglés | LILACS | ID: lil-616981

RESUMEN

Angiosperm and gymnosperm plants evolved from a common ancestor about 300 million years ago. Apart from morphological and structural differences in embryogenesis and seed origin, a set of embryogenesis-regulating genes and the molecular mechanisms involved in embryo development seem to have been conserved alike in both taxa. Few studies have covered molecular aspects of embryogenesis in the Brazilian pine, the only economically important native conifer in Brazil. Thus eight embryogenesis-regulating genes, viz.,ARGONAUTE 1, CUP-SHAPED COTYLEDON 1, WUSCHEL-related WOX, S-LOCUS LECTIN PROTEIN KINASE, SCARECROW-like, VICILIN 7S, LEAFY COTYLEDON 1, and REVERSIBLE GLYCOSYLATED POLYPEPTIDE 1, were analyzed through semiquantitative RT-PCR during embryo development and germination. All the eight were found to be differentially expressed in the various developmental stages of zygotic embryos, seeds and seedling tissues. To our knowledge, this is the first report on embryogenesis-regulating gene expression in members of the Araucariaceae family, as well as in plants with recalcitrant seeds.


Asunto(s)
Tracheophyta/embriología , Regulación del Desarrollo de la Expresión Génica , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Brasil , Tracheophyta/genética , Semillas/crecimiento & desarrollo
19.
Braz. arch. biol. technol ; Braz. arch. biol. technol;53(2): 409-417, Mar.-Apr. 2010. ilus
Artículo en Inglés | LILACS | ID: lil-546572

RESUMEN

The aim of this work was to determine PAs levels in pith tissues and callus cultures from haploid and diploid tobacco plants, explanted from the apical and basal regions of the stem. These explants were cultured in an RM-64 medium supplied with IAA and kinetin, under light or in the dark, during successive subcultures. PAs levels followed a basipetal decrease in diploid and an increase in haploid, pith tissues. A similar pattern of total PAs (free + conjugated) was observed for the callus of diploid and haploid plants maintained in the light, and for the haploid callus in the dark, whereas the diploid callus in the dark showed a constant increase in total PAs levels until the end of culture. The PA increase in the diploid callus in the dark was related to free Put levels increase. The ploidy status of the plants could express different PA gradients together with the plant pith and in vitro callus cultures.


O objetivo deste trabalho foi determinar os níveis de PAs em tecidos de medula e cultura de calos de plantas haplóides e diplóides de tabaco, obtidas da região apical e basal do caule. Estes explantes foram cultivados em meio RM-64 suplementado com AIA e cinetina, na luz e no escuro, durante vários subcultivos. Nos tecidos medulares, os níveis de PAs apresentam um decréscimo basípeto em diplóides e um aumento em haplóides.Um padrão similar nos níveis de PAs totais (livres+ conjugadas) foi observado em calos haplóides e diplóides mantidos na luz, e haplóides no escuro, enquanto os diplóides cultivados no escuro mostraram um aumento constante até o final do cultivo. O aumento no conteúdo de PAs nos calos diplóides no escuro, foi devido ao aumento do conteúdo de Put livre. Foi observado que a ploidia da planta pode expressar diferentes gradientes de PA ao longo do tecido medular e nas culturas de calos in vitro.

20.
Microbiol Res ; 158(4): 309-15, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-14717451

RESUMEN

Beijerinckia derxii, a free-living nitrogen-fixing bacterium, maintained an increasing nitrogenase specific activity during the stationary growth phase. To verify the destination of the nitrogen fixed during this phase, intra and extracellular nitrogenated contents were analyzed. Organic nitrogen and amino acids were detected in the supernatant of the cultures. An increase in intracellular content of both nitrogen and protein occurred. Cytoplasmic granules indicated the presence of arginine. The ability of a non-diazotrophic bacterium (E. coli) to use B. derxii proteins as a source of nitrogen was observed concomitantly with E. coli growth. There is a suggestion that B. derxii contributes to the environment by both releasing nitrogenated substances and accumulating substances capable of being consumed after its death.


Asunto(s)
Beijerinckiaceae/enzimología , Beijerinckiaceae/crecimiento & desarrollo , Nitrógeno/metabolismo , Nitrogenasa/metabolismo , Recuento de Colonia Microbiana , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/metabolismo , Fijación del Nitrógeno , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA