Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37049152

RESUMEN

The present work reports the photoluminescence (PL) and photocatalytic properties of multi-walled carbon nanotubes (MWCNTs) decorated with Fe-doped ZnO nanoparticles. MWCNT:ZnO-Fe nanocomposite samples with weight ratios of 1:3, 1:5 and 1:10 were prepared using a facile synthesis method. The obtained crystalline phases were evidenced by X-ray diffraction (XRD). X-ray Photoelectron spectroscopy (XPS) revealed the presence of both 2+ and 3+ valence states of Fe ions in a ratio of approximately 0.5. The electron paramagnetic resonance EPR spectroscopy sustained the presence of Fe3+ ions in the ZnO lattice and evidenced oxygen vacancies. Transmission electron microscopy (TEM) images showed the attachment and distribution of Fe-doped ZnO nanoparticles along the nanotubes with a star-like shape. All of the samples exhibited absorption in the UV region, and the absorption edge was shifted toward a higher wavelength after the addition of MWCNT component. The photoluminescence emission spectra showed peaks in the UV and visible region. Visible emissions are a result of the presence of defects or impurity states in the material. All of the samples showed photocatalytic activity against the Rhodamine B (RhB) synthetic solution under UV irradiation. The best performance was obtained using the MWCNT:ZnO-Fe(1:5) nanocomposite samples, which exhibited a 96% degradation efficiency. The mechanism of photocatalytic activity was explained based on the reactive oxygen species generated by the nanocomposites under UV irradiation in correlation with the structural and optical information obtained in this study.

2.
J Food Sci Technol ; 57(6): 2222-2232, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32431348

RESUMEN

In this study, 41 tomato samples were investigated by means of stable isotope ratios (δ13C, δ18O and δ2H), elemental content, phenolic compounds and pesticides in order to classify them, according to growing conditions and geographical origin. Using investigated parameters, stepwise linear discriminant analysis was applied and the differences that occurred between tomato samples grown in greenhouses compared to those grown on field, and also between Romanian and abroad purchased samples were pointed out. It was shown that Ti, Ga, Te, δ2H and δ13C content were able to differentiate Romanian tomato samples from foreign samples, whereas Al, Sc, Se, Dy, Pb, δ18O, 4,4'-DDT could be used as markers for growing regime (open field vs. greenhouse). For the discrimination of different tomato varieties (six cherry samples and fourteen common sorts) grown in greenhouse, phenolic compounds of 20 samples were determined. In this regard, dihydroquercetin, caffeic acid, chlorogenic acid, rutin, rosmarinic acid, quercetin and naringin were the major phenolic compounds detected in our samples. The phenolic profile showed significant differences between cherry tomato and common tomato. The contents of the chlorogenic acid and rutin were significantly higher in the cherry samples (90.27-243.00 µg/g DW and 160.60-433.99 µg/g DW respectively) as compared to common tomatoes (21.30-88.72 µg/g DW and 24.84-110.99 µg/g DW respectively). The identification of dihydroquercetin is of particular interest, as it had not been reported previously in tomato fruit.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA