Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 31(4): 731-9, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8806404

RESUMEN

The wild-type gene encoding granule-bound starch synthase (GBSS) is capable of both complementing the amylose-free (amf) potato mutant and inhibiting the endogenous GBSS gene expression in wild-type potato. Co-suppression of the endogenous GBSS gene, easily visualised by staining the starch with iodine, occurred when the full-size GBSS sequence (genomic), GBSS cDNA or even the mutant amf allele were introduced into the wild-type potato. Conversely, introduction of the GBSS promoter sequence alone, did not result in co-suppression in the 80 analysed transformants. Neither the orientation of the GBSS gene with respect to kanamycin resistance nor the presence of an enhancer influenced the frequency of plants showing a co-suppression phenotype. After crossing a partially complemented amf mutant with a homozygous wild-type plant, the F1 offspring segregated into plant phenotypes with normal and decreased expression of the GBSS gene. This decreased expression correlated with the presence of a linked block of five T-DNA inserts which was previously shown to be correlated with partial complementation of the amf mutant. This crossing experiment indicates that co-suppression can cause inhibition of gene expression of both inserted and endogenous wild-type GBSS genes. The frequency of partially complemented amf plants was equal to the frequency of co-suppressed wild types when a construct, with an enhancer in front of the GBSS promoter, was used (pWAM 101E). This might suggest that partial complementation of the amf genotype caused by unstable expression of the transgene can be overcome by inserting an enhancer in front of the GBSS promoter.


Asunto(s)
ADN Bacteriano/genética , Prueba de Complementación Genética , Solanum tuberosum/enzimología , Almidón Sintasa/genética , Amilosa/análisis , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Raíces de Plantas/química , Plantas Modificadas Genéticamente , ARN Mensajero/análisis , ARN de Planta/análisis , Solanum tuberosum/química , Solanum tuberosum/genética , Almidón/química , Almidón Sintasa/metabolismo , Supresión Genética
2.
Theor Appl Genet ; 92(1): 121-7, 1996 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24166126

RESUMEN

A gene-dosage population was obtained by crossing two genotypes that were duplex for the GBSS allele. Nulliplex, simplex, duplex or triplex/quadruplex plants could be identified by monitoring the segregation of red and blue microspores after staining with iodine. GBSS activity was significantly different for all groups and showed an almost linear dosage effect for the wildtype GBSS gene. A dosage effect was found for amylose content that was not linear. The amylose content was similar for both the duplex and triplex/quadruplex group. Within the simplex group, differences in amylose content were found, which might be due to a different genetic background. There was no linear correlation between GBSS activity and amylose content. A certain level of GBSS activity led to a maximum amount of amylose, and further increase in GBSS activity did not result in a further increase in amylose content. The presence of one or more wildtype GBSS allele(s), and therefore the presence of amylose in the starch granules, had a great influence on the physico-chemical properties of the starch suspensions.

3.
Theor Appl Genet ; 88(3-4): 369-75, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24186021

RESUMEN

Granule-bound starch synthase (GBSS) catalyses the synthesis of amylose in starch granules. Transformation of a diploid amylose-free (amf) potato mutant with the gene encoding GBSS leads to the restoration of amylose synthesis. Transformants were obtained which had wild-type levels of both GBSS activity and amylose content. It proved to be difficult to increase the amylose content above that of the wild-type potato by the introduction of additional copies of the wild-type GBSS gene. Staining of starch with iodine was suitable for investigating the degree of expression of the inserted GBSS gene in transgenic amf plants. Of the 19 investigated transformants, four had only red-staining starch in tubers indicating that no complementation of the amf mutation had occured. Fifteen complemented transformants had only blue-staining starch in tubers or tubers of different staining categories (blue, mixed and red), caused either by full or partial expression of the inserted gene. Complementation was also found in the microspores. The segregation of blue- and red-staining microspores was used to analyse the inheritance of the introduced GBSS genes. A comparison of the results from microspore staining and Southern hybridisation indicated that, in three tetraploid transgenics, the gene was probably inserted before (duplex), and in all others after, chromosome doubling (simplex). The partial complementation was not due to methylation of the HPAII/MSPI site in the promoter region. Partially complemented plants had low levels of mRNA as was found when the GBSS expression levels were inhibited by anti-sense technology.

4.
Theor Appl Genet ; 78(2): 185-93, 1989 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24227143

RESUMEN

Agrobacterium transformation of stem internodes of four monohaploid (839-79, 849-7, 851-23, 855-1) and two diploid (M9 and HH260) potato genotypes using hairy root-inducing single (LBA 1020, LBA 9365, LBA 9402) and binary (LBA 1060KG) vectors is reported. Various media and successive culture steps were tested for plant regeneration from different transformed root clones. The fate of introduced genetic markers in root clones and regenerated plants (hairy root phenotype, hormone autotrophy, opine production, kanamycin resistance, ß-glucuronidase activity), the ploidy stability and protoplast yield were analysed. The transformation efficiency of stem internodes (hairy root production) and the regeneration capacity of the transformed root clones greatly differed within and between the various potato genotypes. The regenerated plants obtained after transformation with both types of vectors often showed the absence of one or more genetic markers. However, transformation with the binary Agrobacterium vector generally resulted in the stable presence of the opines in all transformed root clones and most regenerated plants. In HH260, transformation efficiency, plant regeneration of transformed root clones, protoplast yield and ploidy stability were the highest as compared to the other genotypes. The application of these transformed plants as marker lines in gene mapping and gene expression studies is indicated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA