Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(9): e44140, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984468

RESUMEN

The endoskeletal structure of the Sea Urchin, Centrostephanus rodgersii, has numerous long spines whose known functions include locomotion, sensing, and protection against predators. These spines have a remarkable internal microstructure and are made of single-crystal calcite. A finite-element model of the spine's unique porous structure, based on micro-computed tomography (microCT) and incorporating anisotropic material properties, was developed to study its response to mechanical loading. Simulations show that high stress concentrations occur at certain points in the spine's architecture; brittle cracking would likely initiate in these regions. These analyses demonstrate that the organization of single-crystal calcite in the unique, intricate morphology of the sea urchin spine results in a strong, stiff and lightweight structure that enhances its strength despite the brittleness of its constituent material.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/fisiología , Erizos de Mar/anatomía & histología , Erizos de Mar/fisiología , Estructuras Animales/diagnóstico por imagen , Estructuras Animales/ultraestructura , Animales , Australia , Fenómenos Biomecánicos/fisiología , Carbonato de Calcio , Cristalización , Elasticidad , Análisis de Elementos Finitos , Procesamiento de Imagen Asistido por Computador , Modelos Biológicos , Erizos de Mar/ultraestructura , Estrés Mecánico , Torsión Mecánica , Microtomografía por Rayos X
2.
Science ; 336(6079): 332-5, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22517856

RESUMEN

Crystal defects form during tectonic deformation and are reactivated by the shear stress associated with passing seismic waves. Although these defects, known as dislocations, potentially contribute to the attenuation of seismic waves in Earth's upper mantle, evidence for dislocation damping from laboratory studies has been circumstantial. We experimentally determined the shear modulus and associated strain-energy dissipation in pre-deformed synthetic olivine aggregates under high pressures and temperatures. Enhanced high-temperature background dissipation occurred in specimens pre-deformed by dislocation creep in either compression or torsion, the enhancement being greater for prior deformation in torsion. These observations suggest the possibility of anisotropic attenuation in relatively coarse-grained rocks where olivine is or was deformed at relatively high stress by dislocation creep in Earth's upper mantle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA