Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(10)2022 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-35629556

RESUMEN

The resonant interaction of a plane wave and a one-dimensional Gaussian beam with a high-contrast dielectric grating was analyzed. Rigorous coupled wave analysis (RCWA) was used to numerically model the diffraction of a plane wave by the grating. RCWA, a discrete Fourier transform at the fulfillment (of the conditions) of the sampling theorem, was used to study diffraction of the Gaussian beam. The grating can be considered as a one-dimensional photonic crystal along which the waveguide mode propagates under resonance. The corresponding photonic crystal has both allowed and forbidden photonic bands for the propagating waveguide mode under resonance due to the high-contrast dielectric permittivity. There is no significant difference between the spectral and angular characteristics under the interaction of the plane wave or the Gaussian beam with grating, if the waveguide mode is in the forbidden photonic bandgap. The reflection coefficient from the grating is practically equal to unity for both cases. Resonant spectral and angular characteristics become wider at the Gaussian beam diffraction compared to the resonance curves for the plane wave in the case when the waveguide mode is in the allowed photon bandgap. The reflection coefficient from the grating becomes less than unity and its value tends to unity when the Gaussian beam width increases.

2.
Materials (Basel) ; 14(9)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33925525

RESUMEN

In this work, the diffraction of a Gaussian beam on a volume phase grating was researched theoretically and numerically. The proposed method is based on rigorous coupled-wave analysis (RCWA) and Fourier transform. The Gaussian beam is decomposed into plane waves using the Fourier transform. The number of plane waves is determined using the sampling theorem. The complex reflected and transmitted amplitudes are calculated for each RCWA plane wave. The distribution of the fields along the grating for the reflected and transmitted waves is determined using inverse Fourier transform. The powers of the reflected and transmitted waves are determined based on these distributions. Our method shows that the energy conservation law is satisfied for the phase grating. That is, the power of the incident Gaussian beam is equal to the sum of the powers of the reflected and transmitted beams. It is demonstration of our approach correctness. The numerous studies have shown that the spatial shapes of the reflected and transmitted beams differ from the Gaussian beam under resonance. In additional, the waveguide mode appears also in the grating. The spatial forms of the reflected and transmitted beams are Gaussian in the absence of resonance. It was found that the width of the resonance curves is wider for the Gaussian beam than for the plane wave. However, the spectral and angular sensitivities are the same as for the plane wave. The resonant wavelengths are slightly different for the plane wave and the Gaussian beam. Numerical calculations for four refractive index modulation coefficients of the grating medium were carried out by the proposed method. The widths of the resonance curves decrease with the increasing in the refractive index modulation. Moreover, the reflection coefficient also increases.

3.
Nanomaterials (Basel) ; 12(1)2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-35010022

RESUMEN

In this work the features of the resonance in a rectangular dielectric surface-relief gratings, illuminated with a limited cross-section Gaussian beam, have been studied. The rigorous coupled wave method and beam decomposition into the plane waves by the Fourier transform have been used. It is shown that there is a resonant wavelength for each thickness of the dielectric grating. The value of resonant wavelength depends on the beam angle of incidence on the gratings. Moreover, the two types of resonances can occur in the grating at certain grating parameters. The power reflection coefficient is practically equal to unity for the first type of resonance and is much smaller than unity, for the second one. The obtained results extend the knowledge regarding the nature of the waveguide resonance in the dielectric grating, considering the limited cross section beam, and they can increase its use in many applications.

4.
Nanomaterials (Basel) ; 10(11)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114286

RESUMEN

Organic-inorganic photocurable nanocomposite materials are a topic of intensive research nowadays. The wide variety of materials and flexibility of their characteristics provide more freedom to design optical elements for light and neutron optics and holographic sensors. We propose a new strategy of nanocomposite application for fabricating resonant waveguide structures (RWS), whose working principle is based on optical waveguide resonance. Due to their resonant properties, RWS can be used as active tunable filters, refractive index (RI) sensors, near-field enhancers for spectroscopy, non-linear optics, etc. Our original photocurable organic-inorganic nanocomposite was used as a material for RWS. Unlike known waveguide structures with corrugated surfaces, we investigated the waveguide gratings with the volume modulation of the RI fabricated by a holographic method that enables large-size structures with high homogeneity. In order to produce thin photosensitive waveguide layers for their subsequent holographic structuring, a special compression method was developed. The resonant and sensing properties of new resonant structures were experimentally examined. The volume waveguide gratings demonstrate narrow resonant peaks with a bandwidth less than 0.012 nm. The Q-factor exceeds 50,000. The sensor based on waveguide volume grating provides detection of a minimal RI change of 1 × 10-4 RIU. Here we also present the new theoretical model that is used for analysis and design of developed RWS. Based on the proposed model, fairly simple analytical relationships between the parameters characterizing the sensor were obtained.

5.
Materials (Basel) ; 13(13)2020 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-32635590

RESUMEN

The resonant excitation of the surface plasmon-polariton waves by the prism structure, where a thin silver film was coated on the prism, was studied. New analytical relations between the angular and spectral sensitivities on the change of the medium refractive index, adjacent to the metal film, were obtained. In addition, the analytical relation between the full width at the half maximum of the spectral and angular resonance dependencies were found.

6.
Nanoscale Res Lett ; 11(1): 146, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26979724

RESUMEN

In the present study, diamond-like carbon films with embedded Ag nanoparticles (DLC:Ag) were deposited by reactive magnetron sputtering. Structure of the films was investigated by Raman scattering spectroscopy. Atomic force microscopy was used to define thickness of DLC:Ag films as well as to study the surface morphology and size distribution of Ag nanoparticles. Optical absorbance and reflectance spectra of the films were studied in the 180-1100-nm range. Air annealing effects on structure and optical properties of the DLC:Ag were investigated. Annealing temperatures were varied in the 180-400 °C range. Changes of size and shape of the Ag nanoclusters took place due to agglomeration. It was found that air annealing of DLC:Ag films can result in graphitization following destruction of the DLC matrix. Additional activation of surface-enhanced Raman scattering (SERS) effect in DLC:Ag films can be achieved by properly selecting annealing conditions. Annealing resulted in blueshift as well as significant narrowing of the plasmonic absorbance and reflectance peaks. Moreover, quadrupole surface plasmon resonance peaks appeared. Modeling of absorption spectra of the nanoclusters depending on the shape and surrounding media has been carried out.

7.
Nanoscale Res Lett ; 10: 157, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25977645

RESUMEN

Diamond-like carbon nanocomposite films with embedded silver nanoparticles are considered experimentally (spectroellipsometric characterization) and theoretically (modeling of optical properties). Metallic nanocomposite films were synthesized by reactive magnetron sputtering and were studied by transmission electron microscope (TEM) and atomic force microscope (AFM). The optical constants of the films were determined from spectroscopic ellipsometry measurements and were modeled using the Maxwell-Garnett approximations. Comparison between the extended and renormalized Maxwell-Garnett theory was conducted. Surface plasmon resonance peak have been found to be strongly dependent on the shape of nanoparticles and interaction between them.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA