Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39281760

RESUMEN

Background and aims: Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods: Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results: Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions: Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. HIGHLIGHTS: HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.

2.
Elife ; 112022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-35072627

RESUMEN

Obesity has repeatedly been linked to reorganization of the gut microbiome, yet to this point obesity therapeutics have been targeted exclusively toward the human host. Here, we show that gut microbe-targeted inhibition of the trimethylamine N-oxide (TMAO) pathway protects mice against the metabolic disturbances associated with diet-induced obesity (DIO) or leptin deficiency (Lepob/ob). Small molecule inhibition of the gut microbial enzyme choline TMA-lyase (CutC) does not reduce food intake but is instead associated with alterations in the gut microbiome, improvement in glucose tolerance, and enhanced energy expenditure. We also show that gut microbial CutC inhibition is associated with reorganization of host circadian control of both phosphatidylcholine and energy metabolism. This study underscores the relationship between microbe and host metabolism and provides evidence that gut microbe-derived trimethylamine (TMA) is a key regulator of the host circadian clock. This work also demonstrates that gut microbe-targeted enzyme inhibitors have potential as anti-obesity therapeutics.


Asunto(s)
Colina/análogos & derivados , Ritmo Circadiano/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Obesidad/metabolismo , Animales , Colina/administración & dosificación , Colina/metabolismo , Dieta Alta en Grasa , Inhibidores Enzimáticos/farmacología , Leptina/deficiencia , Liasas/efectos de los fármacos , Masculino , Metilaminas/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Obesidad/microbiología
3.
Elife ; 82019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31621579

RESUMEN

Recent studies have identified a genetic variant rs641738 near two genes encoding membrane bound O-acyltransferase domain-containing 7 (MBOAT7) and transmembrane channel-like 4 (TMC4) that associate with increased risk of non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcohol-related cirrhosis, and liver fibrosis in those infected with viral hepatitis (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017). Based on hepatic expression quantitative trait loci analysis, it has been suggested that MBOAT7 loss of function promotes liver disease progression (Buch et al., 2015; Mancina et al., 2016; Luukkonen et al., 2016; Thabet et al., 2016; Viitasalo et al., 2016; Krawczyk et al., 2017; Thabet et al., 2017), but this has never been formally tested. Here we show that Mboat7 loss, but not Tmc4, in mice is sufficient to promote the progression of NAFLD in the setting of high fat diet. Mboat7 loss of function is associated with accumulation of its substrate lysophosphatidylinositol (LPI) lipids, and direct administration of LPI promotes hepatic inflammatory and fibrotic transcriptional changes in an Mboat7-dependent manner. These studies reveal a novel role for MBOAT7-driven acylation of LPI lipids in suppressing the progression of NAFLD.


Asunto(s)
Aciltransferasas/genética , Proteínas de la Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/genética , Acilación , Animales , Progresión de la Enfermedad , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA