RESUMEN
Botulism is a paralytic disease caused by the intoxication of neurotoxins produced by Clostridium botulinum. Among the seven immunologically distinct serotypes of neurotoxins (BoNTs A - G), serotypes C and D, or a chimeric fusion termed C/D or D/C, are responsible for animal botulism. The most effective way to prevent botulism in cattle is through vaccination; however, the commercially available vaccines produced by detoxification of native neurotoxins are time-consuming and hazardous. To overcome these drawbacks, a non-toxic recombinant vaccine was developed as an alternative. In this study, the recombinant protein vaccine was produced using an Escherichia coli cell-based system. The formaldehyde-inactivated E. coli is able to induce 7.45 ± 1.77 and 6.6 ± 1.28 IU/mL neutralizing mean titers against BoNTs C and D in cattle, respectively, determined by mouse neutralization bioassay, and was deemed protective by the Brazilian legislation. Moreover, when the levels of anti-BoNT/C and D were compared with those achieved by the recombinant purified vaccines, no significant statistical difference was observed. Cattle vaccinated with the commercial vaccine developed 1.33 and 3.33 IU/mL neutralizing mean titers against BoNT serotypes C and D, respectively. To the best of our knowledge, this study is the first report on recombinant E. coli bacterin vaccine against botulism. The vaccine was safe and effective in generating protective antibodies and, thus, represents an industry-friendly alternative for the prevention of cattle botulism.
Asunto(s)
Vacunas Bacterianas/inmunología , Toxinas Botulínicas/inmunología , Botulismo/veterinaria , Enfermedades de los Bovinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Botulismo/prevención & control , Brasil , Bovinos , Enfermedades de los Bovinos/microbiología , Clostridium botulinum , Escherichia coli , Ratones , Pruebas de Neutralización , Proteínas Recombinantes/inmunología , Vacunas SintéticasRESUMEN
Botulism is a potentially fatal intoxication caused by botulinum neurotoxins (BoNTs) produced mainly by Clostridium botulinum. Vaccination against BoNT serotypes C and D is the main procedure to control cattle botulism. Current vaccines contain formaldehyde-inactivated native BoNTs, which have a time-consuming production process and pose safety risks. The development of non-toxic recombinant vaccines has helped to overcome these limitations. This study aims to evaluate the humoral immune response generated by cattle immunized with non-purified recombinant fragments of BoNTs C and D. Cattle were vaccinated in a two-dose scheme with 100, 200 and 400 µg of each antigen, with serum sampling on days 0, 56, 120, and 180 after vaccination. Animals who received either 200 or 400 µg of both antigens induced titers higher than the minimum required by the Brazilian ministry of Agriculture, Livestock and Food Supply and achieved 100% (8/8) seroconversion rate. Animals vaccinated with commercial toxoid vaccine had only a 75% (6/8) seroconversion rate for both toxins. Animals that received doses containing 400 µg of recombinant protein were the only ones to maintain titers above the required level up until day 120 post-vaccination, and to achieve 100% (8/8) seroconversion for both toxins. In conclusion, 400 µg the recombinant Escherichia coli cell lysates supernatant was demonstrated to be an affordable means of producing an effective and safe botulism vaccine for cattle.
Asunto(s)
Vacunas Bacterianas/farmacología , Toxinas Botulínicas/inmunología , Botulismo/prevención & control , Enfermedades de los Bovinos/prevención & control , Animales , Anticuerpos Antibacterianos/sangre , Anticuerpos Neutralizantes/sangre , Bovinos , Inmunidad Humoral/efectos de los fármacos , Vacunas Sintéticas/farmacologíaRESUMEN
Despite common occurrence and importance of canine distemper disease the majority of tests currently available for diagnosis are hampered by either low sensitivity or specificity. In this study it was evaluated antigenic and immunogenic characteristics of a conserved region of nucleocapsid protein of canine distemper virus (rCDV NP) expressed in Escherichia coli employing a codon optimized synthetic gene. The expression of rCDVNP in Star strain (mean 300μg/mL, purified) was confirmed by SDS-PAGE and Western blot analysis by using His-Tag monoclonal antibodies. Western blot and ELISA, employing positive and negative control dog sera, demonstrated the rCDVNP antigenicity. The rCDVNP was inoculated in hens and immunoglobulin Y (IgY) was purified from the egg yolk. The mean yield of IgY was 28.55mg/mL. IgY reacted with the recombinant protein as demonstrated by Western blot and ELISA assays. In summary, our findings demonstrated that rCDVNP is antigenic since CDV positive dog sera recognized the protein in vitro. Additionally, the rCDVNP proved to be immunogenic in hens being possible to isolate a high concentration of specific IgY antibodies from the egg yolk. Taken together, these results indicate that the rCDVNP along with the specific IgY could be useful tools for development of the canine distemper immunodiagnostic assays.(AU)
Apesar da ocorrência comum e importância da cinomose canina, a maioria dos testes atualmente disponíveis para diagnóstico são prejudicados pela baixa sensibilidade ou especificidade. Neste estudo foram avaliadas características antigênicas e imunogênicas de uma região conservada da proteína do nucleocapsídeo do virus da cinomose canina (rCDV NP) expressa em Escherichia coli empregando um gene sintético e codons otimizados. A expressão na cepa Star (média de 300μg/mL, purificada) foi confirmada por SDS-PAGE e Western blot utilizando anticorpos monoclonais anti-His-Tag. A antigenicidade da rCDVNP foi demonstrada por western blot e ELISA empregando soros de cães positivos e negativos. A rCDVNP foi inoculada em galinhas e imunoglobulina Y (gY) foi obtida e purificada a partir da gema. A produção média de IgY foi 28.55mg/mL. Anticorpos IgY reagiram com a proteína recombinante, quando analisados por Western blot e ELISA. Em resumo, nossos achados demonstram que a rCDVNP produzida é antigênica, uma vez que os anticorpos de soro de cães positivos para CDV reconheceram a proteína in vitro. Além disso, a rCDVNP foi imunogênica em galinhas, sendo possível isolar anticorpos IgY específicos a partir da gema do ovo em altas concentrações. Tomados em conjunto, estes resultados indicam que a rCDVNP juntamente com a IgY específica podem ser ferramentas úteis para elaborar ensaios de imunodiagnóstico de cinomose canina.(AU)
Asunto(s)
Animales , Perros , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Perros/microbiología , Escherichia coli/genética , Reacciones Antígeno-AnticuerpoRESUMEN
Despite common occurrence and importance of canine distemper disease the majority of tests currently available for diagnosis are hampered by either low sensitivity or specificity. In this study it was evaluated antigenic and immunogenic characteristics of a conserved region of nucleocapsid protein of canine distemper virus (rCDV NP) expressed in Escherichia coli employing a codon optimized synthetic gene. The expression of rCDVNP in Star strain (mean 300μg/mL, purified) was confirmed by SDS-PAGE and Western blot analysis by using His-Tag monoclonal antibodies. Western blot and ELISA, employing positive and negative control dog sera, demonstrated the rCDVNP antigenicity. The rCDVNP was inoculated in hens and immunoglobulin Y (IgY) was purified from the egg yolk. The mean yield of IgY was 28.55mg/mL. IgY reacted with the recombinant protein as demonstrated by Western blot and ELISA assays. In summary, our findings demonstrated that rCDVNP is antigenic since CDV positive dog sera recognized the protein in vitro. Additionally, the rCDVNP proved to be immunogenic in hens being possible to isolate a high concentration of specific IgY antibodies from the egg yolk. Taken together, these results indicate that the rCDVNP along with the specific IgY could be useful tools for development of the canine distemper immunodiagnostic assays.(AU)
Apesar da ocorrência comum e importância da cinomose canina, a maioria dos testes atualmente disponíveis para diagnóstico são prejudicados pela baixa sensibilidade ou especificidade. Neste estudo foram avaliadas características antigênicas e imunogênicas de uma região conservada da proteína do nucleocapsídeo do virus da cinomose canina (rCDV NP) expressa em Escherichia coli empregando um gene sintético e codons otimizados. A expressão na cepa Star (média de 300μg/mL, purificada) foi confirmada por SDS-PAGE e Western blot utilizando anticorpos monoclonais anti-His-Tag. A antigenicidade da rCDVNP foi demonstrada por western blot e ELISA empregando soros de cães positivos e negativos. A rCDVNP foi inoculada em galinhas e imunoglobulina Y (gY) foi obtida e purificada a partir da gema. A produção média de IgY foi 28.55mg/mL. Anticorpos IgY reagiram com a proteína recombinante, quando analisados por Western blot e ELISA. Em resumo, nossos achados demonstram que a rCDVNP produzida é antigênica, uma vez que os anticorpos de soro de cães positivos para CDV reconheceram a proteína in vitro. Além disso, a rCDVNP foi imunogênica em galinhas, sendo possível isolar anticorpos IgY específicos a partir da gema do ovo em altas concentrações. Tomados em conjunto, estes resultados indicam que a rCDVNP juntamente com a IgY específica podem ser ferramentas úteis para elaborar ensaios de imunodiagnóstico de cinomose canina.(AU)
Asunto(s)
Animales , Perros , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/inmunología , Perros/microbiología , Escherichia coli/genética , Reacciones Antígeno-AnticuerpoRESUMEN
Bovine herpesviruses 1 and 5 (BoHV-1 and BoHV-5) are economically important pathogens, associated with a variety of clinical syndromes, including respiratory and genital disease, reproductive failure and meningoencephalitis. The standard serological assay to diagnose BoHV-1 and BoHV-5 infections is the virus neutralization test (VNT), a time consuming procedure that requires manipulation of infectious virus. In the present study a highly sensitive and specific single dilution indirect ELISA was developed using recombinant glycoprotein D from BoHV-5 as antigen (rgD5ELISA). Bovine serum samples (n = 450) were screened by VNT against BoHV-5a and by rgD5ELISA. Compared with the VNT, the rgD5ELISA demonstrated accuracy of 99.8%, with 100% sensitivity, 96.7% specificity and coefficient of agreement between the tests of 0.954. The rgD5ELISA described here shows excellent agreement with the VNT and is shown to be a simple, convenient, specific and highly sensitive virus-free assay for detection of serum antibodies to BoHV-5.
Asunto(s)
Enfermedades de los Bovinos/diagnóstico , Encefalitis Viral/diagnóstico , Ensayo de Inmunoadsorción Enzimática/métodos , Infecciones por Herpesviridae/diagnóstico , Meningoencefalitis/diagnóstico , Proteínas del Envoltorio Viral/aislamiento & purificación , Animales , Anticuerpos Antivirales/sangre , Área Bajo la Curva , Bovinos , Enfermedades de los Bovinos/virología , Perros , Encefalitis Viral/inmunología , Geografía , Infecciones por Herpesviridae/inmunología , Herpesvirus Bovino 5 , Células de Riñón Canino Madin Darby , Meningoencefalitis/inmunología , Pruebas de Neutralización , Pichia , Curva ROC , Proteínas Recombinantes/química , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Proteínas del Envoltorio Viral/inmunologíaRESUMEN
A peroxidase linked assay (PLA) was designed to screen bovine sera for the presence of specific antibodies against bovine leukosis virus (BLV). Out of 201 samples of bovine sera analyzed, 52.2% were considered positive by PLA, 26.4% by AGID, and 38.9% by ELISA. Western blotting analyses excluded 27 samples found to be positive by PLA. PLA showed 100% of sensitivity when compared with AGID and ELISA. Specificity was 64.8% and 78%, respectively (kappa coefficients were 0.70 and 0.83). These findings indicate that PLA can be used as an alternative method for the diagnosis of BLV infection in cattle.
Asunto(s)
Anticuerpos Antivirales/sangre , Leucosis Bovina Enzoótica/diagnóstico , Ensayo de Inmunoadsorción Enzimática/veterinaria , Virus de la Leucemia Bovina/inmunología , Peroxidasa/inmunología , Animales , Bovinos , Leucosis Bovina Enzoótica/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Inmunodifusión/métodos , Sensibilidad y EspecificidadRESUMEN
Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.
Asunto(s)
Anticuerpos Antivirales/inmunología , Herpesvirus Suido 1/inmunología , Vacunas contra Herpesvirus/inmunología , Própolis/química , Seudorrabia/prevención & control , Adyuvantes Inmunológicos , Animales , Inmunidad Celular/inmunología , Inmunidad Humoral/inmunología , Ratones , Ratones Endogámicos BALB C , Seudorrabia/inmunología , Porcinos , Vacunas de Productos Inactivados/inmunologíaRESUMEN
Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.