Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cell Death Differ ; 11(2): 175-82, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14576770

RESUMEN

Plant embryogenesis is intimately associated with programmed cell death. The mechanisms of initiation and control of programmed cell death during plant embryo development are not known. Proteolytic activity associated with caspase-like proteins is paramount for control of programmed cell death in animals and yeasts. Caspase family of proteases has unique strong preference for cleavage of the target proteins next to asparagine residue. In this work, we have used synthetic peptide substrates containing caspase recognition sites and corresponding specific inhibitors to analyse the role of caspase-like activity in the regulation of programmed cell death during plant embryogenesis. We demonstrate that VEIDase is a principal caspase-like activity implicated in plant embryogenesis. This activity increases at the early stages of embryo development that coincide with massive cell death during shape remodeling. The VEIDase activity exhibits high sensitivity to pH, ionic strength and Zn(2+) concentration. Altogether, biochemical assays show that VEIDase plant caspase-like activity resembles that of both mammalian caspase-6 and yeast metacaspase, YCA1. In vivo, VEIDase activity is localised specifically in the embryonic cells during both the commitment and in the beginning of the execution phase of programmed cell death. Inhibition of VEIDase prevents normal embryo development via blocking the embryo-suspensor differentiation. Our data indicate that the VEIDase activity is an integral part in the control of plant developmental cell death programme, and that this activity is essential for the embryo pattern formation.


Asunto(s)
Apoptosis , Tipificación del Cuerpo , Caspasas/metabolismo , Picea/embriología , Picea/enzimología , Semillas/citología , Semillas/embriología , Inhibidores de Caspasas , Extractos Celulares , Concentración de Iones de Hidrógeno , Picea/citología , Inhibidores de Proteasas/farmacología , Semillas/enzimología , Cloruro de Sodio/farmacología , Temperatura , Zinc/farmacología
2.
Cell Death Differ ; 9(10): 1057-62, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12232793

RESUMEN

Development of multiple embryos from a single zygote, the phenomenon called monozygotic polyembryony, is a widespread reproductive strategy found in higher plants and especially in gymnosperms. The enigma of plant monozygotic polyembryony is that only one embryo in a polyembryonic seed usually survives while the others are eliminated at an early stage. Here we report that programmed cell death (PCD) is the major mechanism responsible for elimination of subordinate embryos in a polyembryonic seed. Using post-fertilized pine (Pinus sylvestris) ovules, we show that once the dominant embryo is selected and, subsequently, the entire female gametophyte is affected by PCD, the cells of subordinate embryos initiate an autolytic self-destruction program. The progression of embryonic PCD follows a rigid basal-apical pattern, first killing the most basally situated cells, adjacent to the suspensor, and then proceeding towards the apical region until all cells in the embryonal mass are doomed. Our data demonstrate that during polyembryony, PCD serves to halt competition among monozygotic embryos in order to ensure survival of one embryo.


Asunto(s)
Apoptosis/fisiología , Pinus/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Fragmentación del ADN/fisiología , Gametogénesis/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Microscopía Electrónica , Modelos Biológicos , Pinus/metabolismo , Pinus/ultraestructura , Semillas/metabolismo , Semillas/ultraestructura , Transducción de Señal/fisiología
3.
J Cell Sci ; 113 Pt 24: 4399-411, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11082033

RESUMEN

In the animal life cycle, the earliest manifestations of programmed cell death (PCD) can already be seen during embryogenesis. The aim of this work was to determine if PCD is also involved in the elimination of certain cells during plant embryogenesis. We used a model system of Norway spruce somatic embryogenesis, which represents a multistep developmental pathway with two broad phases. The first phase is represented by proliferating proembryogenic masses (PEMs). The second phase encompasses development of somatic embryos, which arise from PEMs and proceed through the same sequence of stages as described for their zygotic counterparts. Here we demonstrate two successive waves of PCD, which are implicated in the transition from PEMs to somatic embryos and in correct embryonic pattern formation, respectively. The first wave of PCD is responsible for the degradation of PEMs when they give rise to somatic embryos. We show that PCD in PEM cells and embryo formation are closely interlinked processes, both stimulated upon withdrawal or partial depletion of auxins and cytokinins. The second wave of PCD eliminates terminally differentiated embryo-suspensor cells during early embryogeny. During the dismantling phase of PCD, PEM and embryo-suspensor cells exhibit progressive autolysis, resulting in the formation of a large central vacuole. Autolytic degradation of the cytoplasm is accompanied by lobing and budding-like segmentation of the nucleus. Nuclear DNA undergoes fragmentation into both large fragments of about 50 kb and multiples of approximately 180 bp. The tonoplast rupture is delayed until lysis of the cytoplasm and organelles, including the nucleus, is almost complete. The protoplasm then disappears, leaving a cellular corpse represented by only the cell wall. This pathway of cell dismantling suggests overlapping of apoptotic and autophagic types of PCD during somatic embryogenesis in Norway spruce.


Asunto(s)
Apoptosis , Árboles , Fragmentación del ADN , ADN de Plantas , Árboles/embriología , Árboles/genética
4.
J Exp Bot ; 51(343): 249-64, 2000 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-10938831

RESUMEN

Several coniferous species can be propagated via somatic embryogenesis. This is a useful method for clonal propagation, but it can also be used for studying how embryo development is regulated in conifers. However, in conifers it is not known to what extent somatic and zygotic embryos develop similarly, because there has been little research on the origin and development of somatic embryos. A time-lapse tracking technique has been set up, and the development of more than 2000 single cells and few-celled aggregates isolated from embryogenic suspension cultures of Norway spruce (Picea abies L. Karst.) and embedded in thin layers of agarose has been traced. Experiments have shown that somatic embryos develop from proembryogenic masses which pass through a series of three characteristic stages distinguished by cellular organization and cell number (stages I, II and III) to transdifferentiate to somatic embryos. Microscopic inspection of different types of structures has revealed that proembryogenic masses are characterized by high interclonal variation of shape and cellular constitution. In contrast, somatic embryos are morphologically conservative structures, possessing a distinct protoderm-like cell layer as well as embryonal tube cells and suspensor. The lack of staining of the arabinogalactan protein epitope recognized by the monoclonal antibody JIM13 was shown to be an efficient marker for distinguishing proembryogenic masses from somatic embryos. The vast majority of cells in proembryogenic masses expressed this epitope and none of cells in the early somatic embryos. The conditions that promote cell proliferation (i.e. the presence of exogenous auxin and cytokinin), inhibit somatic embryo formation; instead, continuous multiplication of stage I proembryogenic masses by unequal division of embryogenic cells with dense cytoplasm is the prevailing process. Once somatic embryos have formed, their further development to mature forms requires abscisic acid and shares a common histodifferentiation pattern with zygotic embryos. Although the earliest stages of somatic embryo development comparable to proembryogeny could not be characterized, the subsequent developmental processes correspond closely to what occurs in the course of early and late zygotic embryogeny. A model for somatic embryogenesis pathways in Picea abies is presented.


Asunto(s)
Árboles/embriología , Modelos Biológicos , Semillas/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA