Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Clin Infect Dis ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39093815

RESUMEN

BACKGROUND: Human parechovirus (HPeV) infection can result in severe disease in infants, including sepsis, seizures, brain injury, and death. In 2022, a resurgence of HPeV was noted in young infants. Spectrum of illness and outcomes remain to be fully described. METHODS: A multi-state retrospective cohort study was conducted to evaluate hospitalizations and outcomes of infants aged ≤6 months admitted in 2022 with laboratory-confirmed HPeV infection. Infants with severe disease were defined as having clinical seizures, or abnormalities on MRI or EEG during admission. Infants with severe vs non-severe disease were compared using descriptive statistics. RESULTS: 124 U.S. infants were identified with HPeV in 11 states. Cases of HPeV peaked in May and presented at a median of 25.8 days of life (0-194 d) with fever, fussiness, and poor feeding. Bacterial and other viral co-infections were rare. 33 (27%) of infants had severe neurologic disease, were more likely to present at an earlier age (13.9 vs 30 days of life, p<0.01), have preterm gestation (12% vs. 1%, p = 0.02), and present with respiratory symptoms (26% vs. 8%, p = 0.01) or apnea (41% vs. 1%, p <0.001). Subcortical white matter cytoxic cerebral edema was common in severe cases. Two infants with HPeV died during admission with severe neurologic HPeV disease; no infant with mild HPeV disease died. CONCLUSIONS: This is the largest, geographically-diverse U.S. study to describe the 2022 HPeV outbreak among infants. Longitudinal follow up of infants is needed to define predictors and outcomes of severe HPeV disease.

2.
Cell Host Microbe ; 32(3): 396-410.e6, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38359828

RESUMEN

Antibiotic resistance and evasion are incompletely understood and complicated by the fact that murine interval dosing models do not fully recapitulate antibiotic pharmacokinetics in humans. To better understand how gastrointestinal bacteria respond to antibiotics, we colonized germ-free mice with a pan-susceptible genetically barcoded Escherichia coli clinical isolate and administered the antibiotic cefepime via programmable subcutaneous pumps, allowing closer emulation of human parenteral antibiotic dynamics. E. coli was only recovered from intestinal tissue, where cefepime concentrations were still inhibitory. Strikingly, "some" E. coli isolates were not cefepime resistant but acquired mutations in genes involved in polysaccharide capsular synthesis increasing their invasion and survival within human intestinal cells. Deleting wbaP involved in capsular polysaccharide synthesis mimicked this phenotype, allowing increased invasion of colonocytes where cefepime concentrations were reduced. Additionally, "some" mutant strains exhibited a persister phenotype upon further cefepime exposure. This work uncovers a mechanism allowing "select" gastrointestinal bacteria to evade antibiotic treatment.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Animales , Ratones , Cefepima , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Tracto Gastrointestinal/microbiología , Polisacáridos , Pruebas de Sensibilidad Microbiana , Mamíferos
3.
PLoS One ; 18(8): e0288758, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37561761

RESUMEN

There is substantial genomic heterogeneity among Staphylococcus aureus isolates of children with acute hematogenous osteomyelitis (AHO) but transcriptional behavior of clinically differentiated strains has not been previously described. This study evaluates transcriptional activity of S. aureus isolates of children with AHO that may regulate metabolism, biosynthesis, or virulence during bacterial growth and pathogenesis. In vitro growth kinetics were compared between three S. aureus clinical isolates from children with AHO who had mild, moderate, and severe illness. Total RNA sequencing was performed for each isolate at six separate time points throughout the logarithmic phase of growth. The NASA RNA-Sequencing Consensus Pipeline was used to identify differentially expressed genes allowing for 54 comparisons between the three isolates during growth. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathways were used to evaluate transcriptional variation in metabolism, biosynthesis pathways and virulence potential of the isolates. The S. aureus isolates demonstrated differing growth kinetics under standardized conditions with the mild isolate having higher optical densities with earlier and higher peak rates of growth than that of the other isolates (p<0.001). Enrichment pathway analysis established distinct transcriptional signatures according to both sampling time and clinical severity. Moderate and severe isolates demonstrated pathways of bacterial invasion, S. aureus infection, quorum sensing and two component systems. In comparison, the mild strain favored biosynthesis and metabolism. These findings suggest that transcriptional regulation during the growth of S. aureus may impact the pathogenetic mechanisms involved in the progression of severity of illness in childhood osteomyelitis. The clinical isolates studied demonstrated a tradeoff between growth and virulence. Further investigation is needed to evaluate these transcriptional pathways in an animal model or during active clinical infections of children with AHO.


Asunto(s)
Osteomielitis , Infecciones Estafilocócicas , Animales , Staphylococcus aureus , Transcriptoma , Osteomielitis/microbiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Infecciones Estafilocócicas/microbiología
5.
bioRxiv ; 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36711614

RESUMEN

In vitro systems have provided great insight into the mechanisms of antibiotic resistance. Yet, in vitro approaches cannot reflect the full complexity of what transpires within a host. As the mammalian gut is host to trillions of resident bacteria and thus a potential breeding ground for antibiotic resistance, we sought to better understand how gut bacteria respond to antibiotic treatment in vivo . Here, we colonized germ-free mice with a genetically barcoded antibiotic pan-susceptible Escherichia coli clinical isolate and then administered the antibiotic cefepime via programmable subcutaneous pumps which allowed for closer emulation of human parenteral antibiotic pharmacokinetics/dynamics. After seven days of antibiotics, we were unable to culture E. coli from feces. We were, however, able to recover barcoded E. coli from harvested gastrointestinal (GI) tissue, despite high GI tract and plasma cefepime concentrations. Strikingly, these E. coli isolates were not resistant to cefepime but had acquired mutations â€" most notably in the wbaP gene, which encodes an enzyme required for the initiation of the synthesis of the polysaccharide capsule and lipopolysaccharide O antigen - that increased their ability to invade and survive within intestinal cells, including cultured human colonocytes. Further, these E. coli mutants exhibited a persister phenotype when exposed to cefepime, allowing for greater survival to pulses of cefepime treatment when compared to the wildtype strain. Our findings highlight a mechanism by which bacteria in the gastrointestinal tract can adapt to antibiotic treatment by increasing their ability to persist during antibiotic treatment and invade intestinal epithelial cells where antibiotic concentrations are substantially reduced.

7.
J Antimicrob Chemother ; 77(12): 3321-3330, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36227655

RESUMEN

BACKGROUND: Pseudomonas aeruginosa infection is the leading cause of death among patients with cystic fibrosis (CF) and a common cause of difficult-to-treat hospital-acquired infections. P. aeruginosa uses several mechanisms to resist different antibiotic classes and an individual CF patient can harbour multiple resistance phenotypes. OBJECTIVES: To determine the rates and distribution of polyclonal heteroresistance (PHR) in P. aeruginosa by random, prospective evaluation of respiratory cultures from CF patients at a large referral centre over a 1 year period. METHODS: We obtained 28 unique sputum samples from 19 CF patients and took multiple isolates from each, even when morphologically similar, yielding 280 unique isolates. We performed antimicrobial susceptibility testing (AST) on all isolates and calculated PHR on the basis of variability in AST in a given sample. We then performed whole-genome sequencing on 134 isolates and used a machine-learning association model to interrogate phenotypic PHR from genomic data. RESULTS: PHR was identified in most sampled patients (n = 15/19; 79%). Importantly, resistant phenotypes were not detected by routine AST in 26% of patients (n = 5/19). The machine-learning model, using the extended sampling, identified at least one genetic variant associated with phenotypic resistance in 94.3% of isolates (n = 1392/1476). CONCLUSION: PHR is common among P. aeruginosa in the CF lung. While traditional microbiological methods often fail to detect resistant subpopulations, extended sampling of isolates and conventional AST identified PHR in most patients. A machine-learning tool successfully identified at least one resistance variant in almost all resistant isolates by leveraging this extended sampling and conventional AST.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Humanos , Pseudomonas aeruginosa/genética , Fibrosis Quística/microbiología , Infecciones por Pseudomonas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Sistema Respiratorio/microbiología , Pruebas de Sensibilidad Microbiana
9.
Clin Chem ; 68(8): 1042-1052, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35616102

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to emerge, and effective tracking requires rapid return of results. Surveillance of variants is typically performed by whole genome sequencing (WGS), which can be financially prohibitive and requires specialized equipment and bioinformatic expertise. Genotyping approaches are rapid methods for monitoring SARS-CoV-2 variants but require continuous adaptation. Fragment analysis may represent an approach for improved SARS-CoV-2 variant detection. METHODS: A multiplex fragment analysis approach (CoVarScan) was validated using PCR targeting variants by size and fluorescent color. Eight SARS-CoV-2 mutational hot spots in variants of concern (VOCs) were targeted. Three primer pairs (recurrently deleted region [RDR] 1, RDR2, and RDR3-4) flank RDRs in the S-gene. Three allele-specific primers target recurrent spike receptor binding domain mutants. Lastly, 2 primer pairs target recurrent deletions or insertions in ORF1A and ORF8. Fragments were resolved and analyzed by capillary electrophoresis (ABI 3730XL), and mutational signatures were compared to WGS results. RESULTS: We validated CoVarScan using 3544 clinical respiratory specimens. The assay exhibited 96% sensitivity and 99% specificity compared to WGS. The limit of detection for the core targets (RDR1, RDR2, and ORF1A) was 5 copies/reaction. Variants were identified in 95% of samples with cycle threshold (CT) <30 and 75% of samples with a CT 34 to 35. Assay design was frozen April 2021, but all subsequent VOCs have been detected including Delta (n = 2820), Mu, (n = 6), Lambda (n = 6), and Omicron (n = 309). Genotyping results are available in as little as 4 h. CONCLUSIONS: Multiplex fragment analysis is adaptable and rapid and has similar accuracy to WGS to classify SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutación , Reacción en Cadena de la Polimerasa/métodos , ARN Viral/análisis , SARS-CoV-2/genética
10.
J Pediatr ; 245: 208-212.e2, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35120990

RESUMEN

OBJECTIVE: To examine the association between uropathogens and pyuria in children <24 months of age. STUDY DESIGN: A retrospective study of children <24 months of age evaluated in the emergency department for suspected urinary tract infection (UTI) with paired urinalysis and urine culture during a 6-year period. Bagged urine specimens or urine culture growing mixed/multiple urogenital organisms were excluded. Analysis was limited to children with positive urine culture as defined by the American Academy of Pediatrics clinical practice guideline culture thresholds. RESULTS: Of 30 462 children, 1916 had microscopic urinalysis and positive urine culture. Urine was obtained by transurethral in-and-out catheterization in 98.3% of cases. Pyuria (≥5 white blood cells per high-powered field) and positive leukocyte esterase (small or more) on the urine dipstick were present in 1690 (88.2%) and 1692 (88.3%) of the children respectively. Children with non-Escherichia coli species were less likely to exhibit microscopic pyuria than children with E coli (OR 0.24, 95% CI 0.17-0.34) with more pronounced effect on Enterococcus and Klebsiella (OR 0.08, 95% CI 0.03-0.18 and OR 0.18, 95% CI 0.11-0.27 respectively). Similarly, positive leukocyte esterase was less frequently seen in non-E coli uropathogens compared with E coli. CONCLUSIONS: Pyuria and leukocyte esterase are not sensitive markers to identify non-E coli UTI in young children. More sensitive screening biomarkers are needed to identify UTI with these uropathogens.


Asunto(s)
Piuria , Infecciones Urinarias , Biomarcadores , Niño , Preescolar , Escherichia coli , Humanos , Estudios Retrospectivos , Urinálisis , Infecciones Urinarias/complicaciones , Infecciones Urinarias/diagnóstico
11.
Med Mycol Case Rep ; 35: 18-21, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35036296

RESUMEN

Here we report a case of a 14-week-old girl with a history of intrauterine drug exposure and hypoxic ischemic encephalopathy secondary to cardiac arrest requiring prolonged resuscitation at birth presented with irritability and a bulging anterior fontanelle. After neurosurgical resection, pathologic examination showed fungal hyphae, and Epicoccum nigrum was detected by fungal PCR and sequencing. To our knowledge, this is the first reported case of a central nervous system infection due to Epicoccum nigrum.

12.
JMIR Med Inform ; 9(10): e32303, 2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34546942

RESUMEN

BACKGROUND: The COVID-19 pandemic has resulted in shortages of diagnostic tests, personal protective equipment, hospital beds, and other critical resources. OBJECTIVE: We sought to improve the management of scarce resources by leveraging electronic health record (EHR) functionality, computerized provider order entry, clinical decision support (CDS), and data analytics. METHODS: Due to the complex eligibility criteria for COVID-19 tests and the EHR implementation-related challenges of ordering these tests, care providers have faced obstacles in selecting the appropriate test modality. As test choice is dependent upon specific patient criteria, we built a decision tree within the EHR to automate the test selection process by using a branching series of questions that linked clinical criteria to the appropriate SARS-CoV-2 test and triggered an EHR flag for patients who met our institutional persons under investigation criteria. RESULTS: The percentage of tests that had to be canceled and reordered due to errors in selecting the correct testing modality was 3.8% (23/608) before CDS implementation and 1% (262/26,643) after CDS implementation (P<.001). Patients for whom multiple tests were ordered during a 24-hour period accounted for 0.8% (5/608) and 0.3% (76/26,643) of pre- and post-CDS implementation orders, respectively (P=.03). Nasopharyngeal molecular assay results were positive in 3.4% (826/24,170) of patients who were classified as asymptomatic and 10.9% (1421/13,074) of symptomatic patients (P<.001). Positive tests were more frequent among asymptomatic patients with a history of exposure to COVID-19 (36/283, 12.7%) than among asymptomatic patients without such a history (790/23,887, 3.3%; P<.001). CONCLUSIONS: The leveraging of EHRs and our CDS algorithm resulted in a decreased incidence of order entry errors and the appropriate flagging of persons under investigation. These interventions optimized reagent and personal protective equipment usage. Data regarding symptoms and COVID-19 exposure status that were collected by using the decision tree correlated with the likelihood of positive test results, suggesting that clinicians appropriately used the questions in the decision tree algorithm.

13.
J Pediatric Infect Dis Soc ; 10(12): 1092-1095, 2021 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-34559236

RESUMEN

In non-endemic settings, transfusion-transmitted malaria (TTM) is rare but potentially fatal and becoming more common with globalization. We present two pediatric cases that demonstrate donor screening using questionnaires is subject to error and that TTM should be considered with fever following numerous transfusions in children, particularly sickle cell patients.


Asunto(s)
Malaria , Reacción a la Transfusión , Donantes de Sangre , Transfusión Sanguínea , Niño , Fiebre , Humanos , Malaria/epidemiología , Estados Unidos/epidemiología
14.
Pediatrics ; 147(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33514634

RESUMEN

OBJECTIVES: Accuracy of pyuria for urinary tract infection (UTI) varies with urine concentration. Our objective of this study was to determine the optimal white blood cell (WBC) cutoff for UTI in young children at different urine concentrations as measured by urine specific gravity. METHODS: Retrospective cross-sectional study of children <24 months of age evaluated in the emergency department for suspected UTI with paired urinalysis and urine culture during a 6-year period. The primary outcome was positive urine culture result as described in the American Academy of Pediatrics clinical practice guideline culture thresholds. Test characteristics for microscopic pyuria cut points and positive leukocyte esterase (LE) were calculated across 3 urine specific gravity groups: low <1.011, moderate 1.011 to 1.020, and high >1.020. RESULTS: Of the total 24 171 patients analyzed, urine culture result was positive in 2003 (8.3%). Urine was obtained by transurethral in-and-out catheterization in 97.9%. Optimal WBC cutoffs per high-power field (HPF) were 3 (positive likelihood ratio [LR+] 10.5; negative likelihood ratio [LR-] 0.12) at low, 6 (LR+ 12; LR- 0.14) at moderate, and 8 (LR+ 11.1; LR- 0.35) at high urine concentrations. Likelihood ratios for small positive LE from low to high urine concentrations (LR+ 25.2, LR- 0.12; LR+ 33.1, LR- 0.15; LR+ 37.6, LR- 0.41) remained excellent. CONCLUSIONS: Optimal pyuria cut point in predicting positive urine culture results changes with urine concentration in young children. Pyuria thresholds of 3 WBCs per HPF at low urine concentrations whereas 8 WBCs per HPF at high urine concentrations have optimal predictive value for UTI. Positive LE is a strong predictor of UTI regardless of urine concentration.


Asunto(s)
Piuria/diagnóstico , Piuria/orina , Urinálisis/métodos , Preescolar , Estudios Transversales , Femenino , Humanos , Lactante , Recién Nacido , Leucocitos/metabolismo , Masculino , Piuria/terapia , Estudios Retrospectivos , Urinálisis/normas , Infecciones Urinarias/diagnóstico , Infecciones Urinarias/terapia , Infecciones Urinarias/orina
16.
Clin Chem ; 66(11): 1381-1395, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141913

RESUMEN

BACKGROUND: Metagenomic next generation sequencing (mNGS) is becoming increasingly available for pathogen detection directly from clinical specimens. These tests use target-independent, shotgun sequencing to detect potentially unlimited organisms. The promise of this methodology to aid infection diagnosis is demonstrated through early case reports and clinical studies. However, the optimal role of mNGS in clinical microbiology remains uncertain. CONTENT: We reviewed studies reporting clinical use of mNGS for pathogen detection from various specimen types, including cerebrospinal fluid, plasma, lower respiratory specimens, and others. Published clinical study data were critically evaluated and summarized to identify promising clinical indications for mNGS-based testing, to assess the clinical impact of mNGS for each indication, and to recognize test limitations. Based on these clinical studies, early testing recommendations are made to guide clinical utilization of mNGS for pathogen detection. Finally, current barriers to routine clinical laboratory implementation of mNGS tests are highlighted. SUMMARY: The promise of direct-from-specimen mNGS to enable challenging infection diagnoses has been demonstrated through early clinical studies of patients with meningitis or encephalitis, invasive fungal infections, community acquired pneumonia, and other clinical indications. However, the proportion of patient cases with positive clinical impact due to mNGS testing is low in published studies and the cost of testing is high, emphasizing the importance of improving our understanding of 'when to test' and for which patients mNGS testing is appropriate.


Asunto(s)
Líquidos Corporales/microbiología , Líquidos Corporales/parasitología , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Metagenómica/normas , Alveolados/genética , Bacterias/genética , Infecciones Bacterianas/diagnóstico , Hongos/genética , Humanos , Micosis/diagnóstico , Infecciones por Protozoos/diagnóstico
18.
J Clin Microbiol ; 59(1)2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33020185

RESUMEN

Interest continues to grow regarding the role of serologic assays for the detection of prior infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The U.S. Food and Drug Administration (FDA) has granted emergency use authorization (EUA) status to many SARS-CoV-2 serologic assays. In this document, expert recommendations from clinical microbiologist members of the American Society for Microbiology (ASM) concerning detailed verification strategies for SARS-CoV-2 serologic assays with FDA EUA are provided, as are insights into assay limitations and reporting considerations for laboratories. Assessments concerning single-antibody and multiantibody isotype detection assays, which may provide either differentiated or nondifferentiated (i.e., total antibody) antibody class results, are addressed. Additional considerations prior to assay implementation are also discussed, including biosafety, quality control, and proficiency testing strategies. As the landscape of SARS-CoV-2 serologic testing is rapidly changing, this document provides updated guidance for laboratorians on application of these assays.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/inmunología , Anticuerpos Neutralizantes/sangre , Humanos , Valor Predictivo de las Pruebas , Estados Unidos , United States Food and Drug Administration
19.
Open Forum Infect Dis ; 7(9): ofaa390, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005702

RESUMEN

An adolescent with failure to thrive developed cuboid bone osteomyelitis and brain abscesses. Mold isolated from both locations was identified by universal genetic sequencing as Nannizziopsis spp, which is typically a pathogen of reptiles. The patient was subsequently diagnosed with a STAT1 mutation and was successfully treated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA