Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Oecologia ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245757

RESUMEN

Increasing atmospheric CO2 levels change the elemental composition in plants, altering their nutritional quality and affecting consumers and ecosystems. Ecological stoichiometry provides a framework for investigating how CO2-driven nutrient dilution in pollen affects bees by linking changes in pollen chemical element proportions to the nutritional needs of bees. We investigated the consequences of five years of Free Air CO2 Enrichment (FACE) in a mature oak-dominated temperate forest on the elemental composition of English oak (Quercus robur) pollen. We measured the concentrations and proportions of 12 elements (C, N, P, S, K, Na, Ca, Mg, Cu, Zn, Fe, and Mn) in Q. robur pollen-bearing flowers collected from the Birmingham Institute for Forest Research (BIFoR) FACE facility. An elevated CO2 (eCO2) level of 150 ppm above ambient significantly reduced the S, K, and Fe levels and altered the multi-element ratio, with different elements behaving differently. This shift in pollen multi-element composition may have subsequent cascading effects on higher trophic levels. To assess the impact on bees, we calculated the stoichiometric mismatch (a measure of the discrepancy between consumer needs and food quality) for two bee species, Osmia bicornis (red mason bee) and Apis mellifera (honey bee), that consume oak pollen in nature. We observed stoichiometric mismatches for P and S, in pollen under eCO2, which could negatively affect bees. We highlight the need for a comprehensive understanding of the changes in pollen multi-element stoichiometry under eCO2, which leads to nutrient limitations under climate change with consequences for bees.

2.
Chemosphere ; 359: 142233, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38705404

RESUMEN

Bees are simultaneously exposed to a variety of pesticides, which are often applied in mixtures and can cause lethal and sublethal effects. The combined effects of pesticides, however, are not measured in the current risk assessment schemes. Additionally, the sublethal effects of pesticides on a variety of physiological processes are poorly recognized in bees, especially in non-Apis solitary bees. In this study, we used a full-factorial design to examine the main and interactive effects of three insecticide formulations with different modes of action (Mospilan 20 SP, Sherpa 100 EC, and Dursban 480 EC) on bee biochemical processes. We measured acetylcholinesterase (AChE), glutathione S-transferase (GST) and esterase (EST) activities, as well as a nonenzymatic biomarker associated with energy metabolism, i.e., ATP level. All studied endpoints were affected by Sherpa 100 EC, and the activities of AChE and EST as well as ATP levels were affected by Dursban 480 EC. Moreover, complex interactions between all three insecticides affected ATP levels, showing outcomes that cannot be predicted when testing each insecticide separately. The results indicate that even if interactive effects are sometimes difficult to interpret, there is a need to study such interactions if laboratory-generated toxicity data are to be extrapolated to field conditions.


Asunto(s)
Acetilcolinesterasa , Glutatión Transferasa , Insecticidas , Animales , Insecticidas/toxicidad , Abejas/efectos de los fármacos , Abejas/fisiología , Acetilcolinesterasa/metabolismo , Glutatión Transferasa/metabolismo , Esterasas/metabolismo , Adenosina Trifosfato/metabolismo
3.
Ecology ; 104(8): e4110, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37232411

RESUMEN

Bees provide important ecological services, and many species are threatened globally, yet our knowledge of wild bee ecology and evolution is limited. While evolving from carnivorous ancestors, bees had to develop strategies for coping with limitations imposed on them by a plant-based diet, with nectar providing energy and essential amino acids and pollen as an extraordinary, protein- and lipid-rich food nutritionally similar to animal tissues. Both nectar and pollen display one characteristic common to plants, a high ratio of potassium to sodium (K:Na), potentially leading to bee underdevelopment, health problems, and death. We discuss why and how the ratio of K:Na contributes to bee ecology and evolution and how considering this factor in future studies will provide new knowledge, more accurately depicting the relationship of bees with their environments. Such knowledge is essential for understanding how plants and bees function and interact and is needed to effectively protect wild bees.


Asunto(s)
Néctar de las Plantas , Polinización , Abejas , Animales , Polen , Plantas , Sodio , Flores
4.
Sci Total Environ ; 820: 153326, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35074369

RESUMEN

We investigated nutrition as a potential mechanism underlying the link between floral diversity/composition and wild bee performance. The health, resilience, and fitness of bees may be limited by a lack of nutritionally balanced larval food (pollen), influencing the entire population, even if adults are not limited nutritionally by the availability and quality of their food (mainly nectar). We hypothesized that the nutritional quality of bee larval food is indirectly connected to the species diversity of pollen provisions and is directly driven by the pollen species composition. Therefore, the accessibility of specific, nutritionally desirable key plant species for larvae might promote bee populations. Using a fully controlled feeding experiment, we simulated different pollen resources that could be available to bees in various environments, reflecting potential changes in floral species diversity and composition that could be caused by landscape changes. Suboptimal concentrations of certain nutrients in pollen produced by specific plant species resulted in reduced bee fitness. The negative effects were alleviated when scarce nutrients were added to these pollen diets. The scarcity of specific nutrients was associated with certain plant species but not with plant diversity. Thus, one of the mechanisms underlying the decreased fitness of wild bees in homogenous landscapes may be nutritional imbalance, i.e., the scarcity of specific nutrients associated with the presence of certain plant species and not with species diversity in pollen provisions eaten by larvae. Accordingly, we provide a conceptual representation of how the floral species composition and diversity can impact bee populations by affecting fitness-related life history traits. Additionally, we suggest that mixes of 'bee-friendly' plants used to improve the nutritional base for wild bees should be composed considering the local flora to supplement bees with vital nutrients that are scarce in the considered environment.


Asunto(s)
Néctar de las Plantas , Polen , Animales , Abejas , Dieta , Nutrientes , Plantas , Polinización
5.
Ecotoxicology ; 30(3): 459-469, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33616802

RESUMEN

In this study, the effects of zinc nanoparticles (ZnO-NPs) and ions (ZnCl2) on the mortality, growth, maturation, and cellular respiration of the earthworm Eisenia andrei were assessed. Earthworms were individually exposed for 98 days, starting from the juvenile stage, to soils contaminated with either ZnO-NPs or ZnCl2 (125, 250, 500 and 1000 mg Zn kg-1 dry weight (dw)). Exposure to the highest-concentration ionic treatments (500 and 1000 mg kg-1) caused 100% mortality, while for other treatments, mortality did not exceed 15% at the end of exposure. Compared to the control treatment, both 125-1000 mg kg-1 ZnO-NPs and 125 or 250 mg kg-1 ZnCl2 stimulated earthworm growth, which might be due to a hormetic effect. ZnO-NPs and ZnCl2 caused different responses at medium Zn concentrations (250 and 500 mg kg-1): earthworms exposed to ionic treatment at 250 mg kg-1 were characterized by a significantly lower growth constant, lower cellular respiration rate, later inflection point, and higher final body weight than those exposed to ZnO-NPs treatments at the same (250 mg kg-1) or twice as high (500 mg kg-1) nominal Zn concentrations. However, differences were not observed in all examined parameters between the studied forms when the highest-concentration ZnO-NPs treatment was compared with the lowest-concentration ionic treatment, which was likely due to the same levels of available Zn concentrations in those treatments. Overall, different growth and maturation strategies accompanied by pronounced differences in cellular respiration were adopted by earthworms exposed to low and medium levels of either ZnO-NPs or ZnCl2.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oligoquetos , Contaminantes del Suelo , Óxido de Zinc , Animales , Respiración de la Célula , Iones , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Óxido de Zinc/toxicidad
6.
Biology (Basel) ; 9(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322450

RESUMEN

Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA