RESUMEN
The bloodsucking horn fly, Haematobia irritans (L.) (Diptera: Muscidae), is one of the most damaging pests of pasture cattle in many areas of the world. Both male and female imagoes spend their adult stage on the host, while immature stages develop in dung. Our goal was to determine if the progress of H. irritans gonad maturation can be correlated with eye and cuticle pigmentation events that occur during development of the imago within the puparium. The progression of germline cell divisions in immature gonads was analyzed from the beginning of the third larval instar (48 hours after egg hatch) until imago ecdysis. In the developing male larval gonad, meiosis began 72 hours after egg hatch, whereas in females oogonia were premeiotic at 72 hours. Meiosis was not detected in females until the mid-pharate adult stage, 120 hours after puparium formation. Therefore, gonad maturation in females appears to be delayed 144 hours with respect to that in males. In the stages within the puparium, the timing of germline cell division events was correlated with the progress of pigmentation of the eyes and cuticle as external markers.
Asunto(s)
Gónadas/crecimiento & desarrollo , Metamorfosis Biológica , Muscidae/crecimiento & desarrollo , Pigmentación , Animales , Femenino , Gametogénesis , Larva/crecimiento & desarrollo , Masculino , Meiosis , Pupa/crecimiento & desarrolloRESUMEN
Escherichia coli MutS, MutL and MutH proteins act sequentially in the MMRS (mismatch repair system). MutH directs the repair system to the newly synthesized strand due to its transient lack of Dam (DNA-adenine methylase) methylation. Although Pseudomonas aeruginosa does not have the corresponding E. coli MutH and Dam homologues, and consequently the MMRS seems to work differently, we show that the mutL gene from P. aeruginosa is capable of complementing a MutL-deficient strain of E. coli. MutL from P. aeruginosa has conserved 21 out of the 22 amino acids known to affect functioning of E. coli MutL. We showed, using protein affinity chromatography, that the C-terminal regions of P. aeruginosa and E. coli MutL are capable of specifically interacting with E. coli MutH and retaining the E. coli MutH. Although, the amino acid sequences of the C-terminal regions of these two proteins are only 18% identical, they are 88% identical in the predicted secondary structure. Finally, by analysing (E. coli-P. aeruginosa) chimaeric MutL proteins, we show that the N-terminal regions of E. coli and P. aeruginosa MutL proteins function similarly, in vivo and in vitro. These new findings support the hypothesis that a large surface, rather than a single amino acid, constitutes the MutL surface for interaction with MutH, and that the N- and C-terminal regions of MutL are involved in such interactions.
Asunto(s)
Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Pseudomonas aeruginosa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Activación Enzimática , Genoma Bacteriano , Datos de Secuencia Molecular , Proteínas MutL , Proteínas Recombinantes , Homología de Secuencia de AminoácidoRESUMEN
In this paper we describe the cloning of rat olfactory bulb tubulin tyrosine ligase (TTL) cDNA, and investigate the physiological role of TTL in cultured CHO-K1 cells. Comparison of the deduced amino acid sequence of rat TTL cDNA with those of bovine and pig showed approximately 90% of identity. Transient transfection of CHO-K1 cells with a dominant negative mutant of TTL that contains the binding site to the substrate (tubulin) but not the catalytic domain, significantly decreased the endogenous TTL activity as determined in vitro. Similar results were obtained using a construction encoding for the antisense sequence of TTL. The reduction in TTL activity is not accompanied by a decrease in the tyrosination levels of microtubules, as judged by immunofluorescence analysis. Strikingly, the number of cells in the plates transfected with the mutant TTL or the antisense TTL cDNA was, after 72 h of culture, two and three times higher, respectively, than the number of cells in the control plates. These results support the hypothesis that TTL may play a role in the regulation of the cell cycle in living cells.