Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 7815, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242611

RESUMEN

Chemical Short-Range Order (CSRO) has attracted recent attention from many researchers, creating intense debates about its impact on material properties. The challenges lie in confirming and quantifying CSRO, as its detection proves exceptionally demanding, contributing to conflicting data in the literature regarding its true effects on mechanical properties. Our work uses high-precision calorimetric data to unambiguously prove the existence and, coupled with atomistic simulations, quantify the type of CSRO. This methodology allows us to propose a mechanism for its formation and destruction based on the heat evolution during thermal analysis and facilitates a precise identification of local ordering in CoCrNi alloys. Samples of CoCrNi (Co33Cr33Ni33) and CrNi2 (Cr33Ni66) alloys are fabricated in varying ordered states, extensively characterized via synchrotron X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy. Samples with considerably different ordered states are submitted to tensile tests with in-situ synchrotron X-ray diffraction. We demonstrate, despite inducing varied CSRO levels in CoCrNi, no significant alterations in overall mechanical behavior emerge. However, the CrNi2 alloy, which undergoes long-range ordering, experiences significant shifts in yield strength, ultimate tensile stress and ductility.

2.
Inorg Chem ; 62(6): 2738-2750, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36714953

RESUMEN

Rare earth(III) ß-diketonates are highly remarkable luminophores in the visible spectral region among the rare earth compounds, owing to the efficient contribution from the 4f-4f intraconfigurational transitions. To get detailed structural insight into the RE3+ sites (RE = Eu, Gd, and Sm), X-ray absorption near-edge spectroscopy (XANES) can be very potent in probing the local chemical environment around the RE3+ ion. In this work, a PyFitIt machine learning approach was employed as a new strategy to simulate the Eu, Gd, and Sm L3-edge XANES and thereby determine the local atomic structure of the luminescence RE3+ ß-diketonate complexes, [Eu(tta)3(H2O)2], [C4mim][Eu(dbm)4], [Gd(tta)3(H2O)2], and [Sm(dbm)3(phen)] (tta, 3-thenoyltrifluoroacetonate; dbm, dibenzoylmethane; phen, phenanthroline; and C4mim, 1-butyl-3-methylimidazolium bromide). Continuous Cauchy wavelet transform validated the PyFitIt calculated XANES by visualizing very efficiently the coordination geometries, composed of O and O/N backscatterers around the RE3+ (RE = Eu and Gd) and Sm3+ ions, respectively, as a pinkish-red color map in the two-dimensional images of the corresponding complexes. Extended X-ray absorption fine structure fit in Artemis also corroborated the three-dimensional structures generated by PyFitIt XANES simulation for all the compounds. Though, relatively slightly higher bond distance values for the Sm3+ complex are due to the higher atomic radius of the Sm3+ ion when compared to the Eu3+ and Gd3+ complexes. Meanwhile, higher Debye-Waller factor (σ2) values for the [C4mim][Eu(dbm)4] when compared to the [Eu(tta)3(H2O)2] indicated the structure disorder, owing to the distortion in the local geometry. It is noteworthy that the optical properties, described mainly by the Ωλ (λ = 2 and 4) 4f-4f intensity parameters, are very sensitive to the local coordination environment around the Eu3+ ion. Thus, a close agreement between the experimental and theoretically calculated Ωλ parameter values confirmed that the PyFitIt calculated square antiprismatic structures are precisely similar to the real structures of the Eu3+ complexes.

3.
J Phys Condens Matter ; 31(50): 505701, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31469102

RESUMEN

Vanadium oxides present a rich magnetic phase diagram depending on the oxidation state of the V ions. In particular the vanadium oxide nanotubes (VO x NTs) present several promising perspectives for different technological applications for which it is essential to know the oxidation state of V ions, as well as to evaluate the stability with the aging time of the tubes. In this work we present a systematic study of the time evolution of the magnetic properties of VO x NTs. For this complete characterization, we used electron spin resonance (ESR) and dc-susceptibility techniques, which were supplemented with TEM microscopy and XANES. We observed that for aging in normal environmental conditions of pressure, temperature and humidity, the V4+ ions oxidize to V5+ . Although the multiwall tubular structure is maintained, this oxidation process produces a marked change in the magnetic properties. We conclude that the aging of the samples affects the V4+ /V5+ relationship in the VO x NTs, which may contribute to explain the significant dispersion of data reported in the bibliography.

4.
Dalton Trans ; 44(37): 16586-91, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26332167

RESUMEN

The electronic and redox properties of a series of cyclometalated Pd complexes with oxidation states of +2, +3 and +4 were examined using a range of currently available spectroscopic and electrochemical techniques. Changes in metal-ligand bond lengths were established by X-ray crystallography and correctly predicted by DFT calculations, from which the frontier orbitals and partial atomic charges can be obtained. X-ray absorption spectroscopy (XAS) revealed interesting XANES features that suggest a synergistic relationship between metal-ligand interactions. The electrochemical study of the Pd(ii) dimer was found to contain two sequential oxidative potentials indicative of a weak metal-metal interaction.

5.
Sci Rep ; 4: 6839, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25354532

RESUMEN

A temperature pause introduced in a simple single-step thermal decomposition of iron, with the presence of silver seeds formed in the same reaction mixture, gives rise to novel compact heterostructures: brick-like Ag@Fe3O4 core-shell nanoparticles. This novel method is relatively easy to implement, and could contribute to overcome the challenge of obtaining a multifunctional heteroparticle in which a noble metal is surrounded by magnetite. Structural analyses of the samples show 4 nm silver nanoparticles wrapped within compact cubic external structures of Fe oxide, with curious rectangular shape. The magnetic properties indicate a near superparamagnetic like behavior with a weak hysteresis at room temperature. The value of the anisotropy involved makes these particles candidates to potential applications in nanomedicine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA