Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Arch Microbiol ; 205(5): 208, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37103635

RESUMEN

The use of force spectroscopy approaches performed with optical tweezers can be very useful in determining the binding modes and the physical chemistry of DNA interactions with ligands, from small drugs to proteins. Helminthophagous fungi, on the other hand, have important enzyme secretion mechanisms for various purposes, and the interactions between such enzymes and nucleic acids are very poorly studied. Therefore, the main goal of the present work was to investigate, at the molecular level, the mechanisms of interaction between fungal serine proteases and the double-stranded (ds) DNA molecule. Experimental assays performed with this single molecule technique consist in exposing different concentrations of the protease of this fungus to dsDNA until saturation while monitoring the changes on the mechanical properties of the macromolecular complexes formed, from where the physical chemistry of the interaction can be deduced. It was found that the protease binds strongly to the double-helix, forming aggregates and changing the persistence length of the DNA molecule. The present work thus allowed us to infer information at the molecular level on the pathogenicity of these proteins, an important class of biological macromolecules, when applied to a target specimen.


Asunto(s)
Ascomicetos , Serina Proteasas , Serina Proteasas/genética , Ascomicetos/genética , Serina Endopeptidasas , ADN
2.
Artículo en Inglés | MEDLINE | ID: mdl-35283937

RESUMEN

Background: Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.

3.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484789

RESUMEN

Abstract Background: Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.

4.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;28: e20210042, 2022. graf, ilus
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1360568

RESUMEN

Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.(AU)


Asunto(s)
Animales , Espectrometría de Masas/instrumentación , Venenos de Araña/análisis , Arañas , Isoformas de Proteínas/biosíntesis , Hialuronoglucosaminidasa , Preparaciones Farmacéuticas
5.
Artículo en Inglés | MEDLINE | ID: mdl-31467512

RESUMEN

BACKGROUND: The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. METHODS: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). RESULTS: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 µg of PnTx4(5-5) injection in rat paw. CONCLUSION: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.

6.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 25: e20190022, Aug. 12, 2019. tab, graf
Artículo en Inglés | VETINDEX | ID: vti-21885

RESUMEN

Background:The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated.Methods:The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2).Results:PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 μg of PnTx4(5-5) injection in rat paw.Conclusion:The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.(AU)


Asunto(s)
Animales , Ratas , Nocicepción , Analgésicos/análisis , Péptidos , Venenos de Araña/uso terapéutico , Glutamatos
7.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;25: e20190022, 2019. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1012634

RESUMEN

The venom of Phoneutria nigriventer spider is a source of numerous bioactive substances, including some toxins active in insects. An example is PnTx4(5-5) that shows a high insecticidal activity and no apparent toxicity to mice, although it inhibited NMDA-evoked currents in rat hippocampal neurons. In this work the analgesic activity of PnTx4(5-5) (renamed Γ-ctenitoxin-Pn1a) was investigated. Methods: The antinociceptive activity was evaluated using the paw pressure test in rats, after hyperalgesia induction with intraplantar injection of carrageenan or prostaglandin E2 (PGE2). Results: PnTx4(5-5), subcutaneously injected, was able to reduce the hyperalgesia induced by PGE2 in rat paw, demonstrating a systemic effect. PnTx4(5-5) administered in the plantar surface of the paw caused a peripheral and dose-dependent antinociceptive effect on hyperalgesia induced by carrageenan or PGE2. The hyperalgesic effect observed in these two pain models was completely reversed with 5 µg of PnTx4(5-5). Intraplantar administration of L-glutamate induced hyperalgesic effect that was significantly reverted by 5 μg of PnTx4(5-5) injection in rat paw. Conclusion: The antinociceptive effect for PnTx4(5-5) was demonstrated against different rat pain models, i.e. induced by PGE2, carrageenan or glutamate. We suggest that the antinociceptive effect of PnTx4(5-5) may be related to an inhibitory activity on the glutamatergic system.(AU)


Asunto(s)
Venenos de Araña , Dinoprostona , Fármacos actuantes sobre Aminoácidos Excitadores , Analgésicos/síntesis química
8.
Mol Cell Biochem ; 419(1-2): 41-51, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27370644

RESUMEN

Spatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM. Mitochondrial size was larger in SSM than in IFM in both genders. However, SSM internal complexity, yield, and membrane potential were higher in male than in female. The maximal rate of mitochondrial respiration, states 3 and 4, using glutamate + malate as substrate, were higher in IFM and SSM in the male group compared to female. The respiratory control ratio (RCR-state3/state 4), was not different in both SSM and IFM with glutamate + malate. The ADP:O ratio was found higher in IFM and SSM from female compared to males. When pyruvate was used, state 3 was found unchanged in both IFM and SSM, state 4 was also greater in male IFM compared to female. The RCR increased in the SSM while IFM remained the same. State 4 was higher in male SSM while in the IFM remained the same. The IFM presented a higher Ca(2+) retention capacity compared with SSM, however, there was a greater sensitivity to Ca(2+)-induced MPTP in SSM and IFM in the male group compared to female. In conclusion, our data show that spatially distinct mitochondrial subpopulations have sex-based differences in oxidative phosphorylation, morphology, and calcium retention capacity.


Asunto(s)
Adenosina Difosfato/metabolismo , Calcio/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Fosforilación Oxidativa , Caracteres Sexuales , Animales , Femenino , Masculino , Poro de Transición de la Permeabilidad Mitocondrial , Ratas , Ratas Wistar
9.
Toxicon ; 104: 73-82, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26220799

RESUMEN

A potent insecticidal toxin, ß/δ-PrIT1, molecular mass of 5598.86 [M+H](+), was characterized from Phoneutria reidyi spider venom. Its partial amino acid sequence showed high similarity with insecticidal spider toxins from the genus Phoneutria. ß/δ-PrIT1 was very toxic (LD50 = 4 nmol/g) to flies (Musca domestica), but not to mice (Mus musculus). Kinetic studies showed that (125)I-ß/δ-PrIT1 binds to two distinct sites in insect sodium channels, with close affinity (Kd1 = 34.7 pM and Kd2 = 35.1 pM). Its association is rather fast (t1/2(1) = 1.4 min, t1/2(2) = 8.5 min) and its dissociation is a slower process (t1/2(1) = 5.4 min, t1/2(2) = 32.8 min). On rat brain synaptosomes ß/δ-PrIT1 partially competed (∼30%) with the beta-toxin (125)I-CssIV, but did not compete with the alpha-toxin of reference (125)I-AaII, nor with the beta-toxin (125)I-TsVII. On cockroach nerve cord synaptosomes, ß/δ-PrIT1 did not compete with the anti-insect toxin (125)I-LqqIT1, but it competed (IC50 = 80 pM) with the "alpha-like" toxin (125)I-BomIV. In cockroach neurons, ß/δ-PrIT1 inhibited the inactivation of Nav-channels and it shifted the sodium channel activation to hyperpolarizing potentials. These results indicate two different binding sites for ß/δ-PrIT1, leading to two different pharmacological responses. ß/δ-PrIT1 is one of the most toxic spider toxins to insects without apparent toxicity to mammals, and provide new model for the development of insecticides.


Asunto(s)
Insecticidas/farmacología , Venenos de Araña/farmacología , Arañas/química , Sinaptosomas/metabolismo , Animales , Sitios de Unión , Brasil , Cucarachas/citología , Cucarachas/efectos de los fármacos , Dípteros/efectos de los fármacos , Femenino , Insecticidas/química , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Wistar , Canales de Sodio/metabolismo , Venenos de Araña/química
10.
Lipids Health Dis ; 14: 26, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25889944

RESUMEN

BACKGROUND: Several studies show that the consumption of vegetable oils, such as soybean oil, rich in polyunsaturated fatty acids (PUFAs) has beneficial health effects by preventing or reducing the risk factors of cardiovascular diseases. While the demonstration of beneficial effects of the consumption of unsaturated fatty acids on the cardiovascular system has been proven in a macroscopic level, the molecular/cellular mechanisms responsible for this phenomenon are poorly understood. METHODS: In this work, a comparative proteomic approach, two-dimensional gel electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF), was applied to investigate proteome differences in the left ventricle (LV) of rats that received 0.1 mL of soybean oil intramuscularly for 15 days (treated group-TR) and rats that had not (control group-CT). RESULTS: Soybean oil treatment improved left ventricular function, TR animals presented lower value of LVEDP and significantly changed LV proteome. The protein profile of VE revealed differences in the expression of 60 protein spots (p<0.05) between the experimental groups (CT and TR), 14 of those were identified by MS and MS/MS, and 12 of the 14 being non-redundant proteins. Robust changes were detected in proteins involved in cellular structure and antioxidant system and muscular contraction. CONCLUSIONS: The TR group presented an increase in the intensity of proteins involved in muscle contraction (myosin light chain-3 (3-MCL), creatine kinase M (CKM)) and thireodoxin, an antioxidant enzyme. Low intensity cytoskeletal protein, desmin, was also detected in TR animals. The results suggest that soybean oil induces changes in the levels of heart proteins which may partially account for the underlying mechanisms involved in the benefits provided by oils rich in polyunsaturated fatty acids.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Proteómica , Aceite de Soja/farmacología , Animales , Electroforesis en Gel Bidimensional , Ventrículos Cardíacos/química , Inyecciones Intramusculares , Masculino , Proteínas/análisis , Proteómica/métodos , Ratas , Ratas Wistar , Aceite de Soja/administración & dosificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Función Ventricular Izquierda/efectos de los fármacos
11.
Int J Biol Macromol ; 77: 214-21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25795388

RESUMEN

There is growing interest in the anticancer and immunomodulatory potential of fungal ß-d-glucans. In the present study, the modulation of gene expression via RT-qPCR and cell cycle kinetics via flow cytometry were assessed in human normal and tumor (Jurkat) lymphocytes after treatment with botryosphaeran (a fungal (1→3)(1→6)-ß-d-glucan) from Botryosphaeria rhodina MAMB-05. Cell cultures were treated with botryosphaeran either alone, or in combination with doxorubicin (DXR), in a post-treatment protocol. The expression of genes involved in immunomodulatory processes, apoptosis and cell cycle control, as well as ß-d-glucans cell receptors were assessed. Flow cytometry analysis identified tetraploid Jurkat cells in G1 phase when treated with botryosphaeran combined with DXR. This antiproliferative effect in G1 may be associated with down-regulation of the expression of genes involved in the G1 checkpoint. The repression of the CCR5 gene following botryosphaeran treatment, either alone or in combination with DXR, in tumor lymphocytes indicates a possible affinity of this particular (1→3)(1→6)-ß-d-glucan for the receptor CCR5. Therefore, botryosphaeran action appears to be involved in the repression of genes related to the G1 phase of the cell cycle and possibly in the interaction of the botryosphaeran, either alone, or in combination with DXR, with the CCR5 receptor.


Asunto(s)
Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Glucanos/farmacología , Linfocitos/citología , Linfocitos/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Inmunomodulación/efectos de los fármacos , Células Jurkat , Cinética , Linfocitos/efectos de los fármacos , Linfocitos/inmunología
12.
Pulm Pharmacol Ther ; 30: 57-65, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25460515

RESUMEN

BACKGROUND: Pulmonary Arterial Hypertension (PAH) is a disease associated with increased arteriolar resistance in the lungs. Due to hypoxemia, some physiological mechanisms can be posteriorly affected, including respiratory and cardiovascular reflexes, but this has not yet been fully investigated. This study aimed to evaluate how these mechanisms were affected by monocrotaline (MCT)-induced PAH and the possible therapeutic role of angiotensin converting enzyme inhibitor (ACEi), captopril, in reversing this remodeling process. METHODS AND RESULTS: Groups of Wistar rats received MCT injections (60 mg kg(-1)). Three weeks later, they received captopril (CPT, 100 mg kg(-1)) in their drinking water (MCT + CPT) or water alone (MCT) for 2 weeks. As control, saline-treated animals received captopril in their drinking water (CPT) or water alone (CON), also for 2 weeks. Results showed that PAH was fully induced in the MCT group, evidenced by a high pulmonary index. Gasometrical and respiratory analyses showed hypoxemia and compensatory hyperventilation. CPT treatment brought these parameters to similar values to those observed in the CON group. We observed that autonomic dysfunction in the MCT group was suppressed by CPT. Finally, cardiovascular reflexes analysis showed increased chemoreflex responses in the MCT group, while baroreflex sensibility was decreased. Surprisingly, CPT normalized these reflex responses to values similar to the CON group. CONCLUSIONS: The present study demonstrates that MCT-induced PAH induces compensatory respiratory responses, dysautonomia, and baroreflex dysfunction and increases chemoreflex responses. The data also indicate that CPT was effective in reversing these cardio-respiratory disorders, suggesting that ACEi could be a potential therapeutic target for PAH.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Captopril/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Animales , Barorreflejo/efectos de los fármacos , Modelos Animales de Enfermedad , Hipertensión Pulmonar/fisiopatología , Masculino , Monocrotalina/toxicidad , Ratas , Ratas Wistar , Remodelación Vascular/efectos de los fármacos
13.
PLoS One ; 8(11): e80892, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24278341

RESUMEN

The studies on hormone replacement therapy (HRT) in females with estrogen deficiency are not conclusive. Thus, non-estrogen therapies, such as atorvastatin (ATO), could be new strategies to substitute or complement HRT. This study evaluated the effects of ATO on mesenteric vascular bed (MVB) function from ovariectomized (OVX) female rats. Female rats were divided into control SHAM, OVX, and OVX treated with 17ß-estradiol (EST) or ATO groups. The MVB reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine staining, and the expression of target proteins by western blot. The reduction in acetylcholine-induced relaxation in OVX rats was restored by ATO or EST treatment. The endothelium-dependent nitric oxide (NO) component was reduced in OVX rats, whereas the endothelium-derived hyperpolarizing factor (EDHF) component or prostanoids were not altered in the MVBs. Endothelial dysfunction in OVX rats was associated with oxidative stress, an up-regulation of iNOS and NADPH oxidase expression and a down-regulation of eNOS expression. Treatment with ATO or EST improved the NO component of the relaxation and normalized oxidative stress and the expression of those signaling pathways enzymes. Thus, the protective effect of ATO on endothelial dysfunction caused by estrogen deficiency highlights a significant therapeutic benefit for statins independent of its effects on cholesterol, thus providing evidence that non-estrogen therapy could be used for cardiovascular benefit in an estrogen-deficient state, such as menopause.


Asunto(s)
Endotelio Vascular/fisiología , Ácidos Heptanoicos/farmacología , Ovariectomía , Estrés Oxidativo/efectos de los fármacos , Pirroles/farmacología , Vasodilatación/efectos de los fármacos , Acetilcolina/farmacología , Animales , Atorvastatina , Factores Biológicos/farmacología , Western Blotting , Peso Corporal/efectos de los fármacos , Colesterol/sangre , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Endotelio Vascular/efectos de los fármacos , Femenino , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/patología , NADPH Oxidasas/metabolismo , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Tamaño de los Órganos/efectos de los fármacos , Prostaglandinas/farmacología , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Útero/efectos de los fármacos , Útero/patología
14.
Ecotoxicol Environ Saf ; 80: 203-7, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22464589

RESUMEN

Poisoning by organophosphorus insecticides is often accompanied by cardiac complications which may be serious and even fatal. However, the effects of these compounds on the cardiovascular mechanisms involved in blood pressure regulation are not known. The aim of this study was to evaluate the effects of a sublethal dose (8 mg/kg, i.p.) of the organophosphorus methamidophos on chemoreceptor (CR) and Bezold-Jarisch (BJR) cardiovascular reflexes. Male Wistar rats were treated with single intraperitoneal injections of methamidophos in saline (n=23) or saline (0.9 percent, n=20) and underwent catheterization of femoral artery and vein one day after the injections. Cardiovascular recordings were performed 24h after the catheterization procedure. Plasma cholinesterase (ChE) activity was measured 24h after similar treatments in separate groups (n=10/group). The bradycardic component of CR and BJR was significantly attenuated in animals treated with methamidophos. The ChE activity was 80 percent reduced in the methamidophos-treated animals. Methamidophos impairment of the bradycardic component of two important cardiovascular reflexes may contribute to the cardiovascular toxicity associated with acute organophosphorus insecticides exposure.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Insecticidas/toxicidad , Compuestos Organotiofosforados/toxicidad , Animales , Presión Sanguínea/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Dosificación Letal Mediana , Masculino , Ratas , Ratas Wistar , Reflejo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA