RESUMEN
Lipoxins (LX) and 15-epi-LX are lipids with a potent inhibitory effect on angiogenesis, in different models in vivo and in vitro. ATL-1, a synthetic analog of 15-epi-LXA4, inhibits various actions stimulated by vascular endothelial growth factor (VEGF). However, LX actions on endothelial cells (EC) in tumor-related contexts are still unknown. Here, we investigated the modulation of EC by ATL-1, in a model that mimics tumor extravasation. We observed that the analog inhibited endothelial permeability induced by VEGF, through the stabilization of VE-cadherin/ß-catenin-dependent adherens junctions. We tested the ability of MV3 cells, a highly metastatic melanoma cell line, to transmigrate across unchallenged EC monolayers for 18 h, as compared to NGM normal melanocytes. ATL-1 was able to inhibit only melanoma extravasation. MV3 cells secrete large amounts of VEGF and we observed that ATL-1 per se did not alter this ability. Melanoma cells skills to crossing endothelial monolayers were due to the steady accumulation of tumor-derived VEGF. When endothelial cells were challenged with exogenous VEGF, added at levels comparable to those secreted by MV3 cells over 18 h, and a short-term (4h) transendothelial migration assay was performed, both melanoma and melanocyte cells were able to extravasate, and ATL-1 was able to block the passage of both cells. These results indicate that ATL-1 has a potent inhibitory effect on the permeability induced by VEGF, and that this pharmacological effect could be used to block tumor extravasation across endothelial barriers, with a possible prospect of reducing the haematogenic spread of cancer cells.
Asunto(s)
Endotelio Vascular/efectos de los fármacos , Lipoxinas/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiología , Línea Celular Tumoral , Células Cultivadas , Endotelio Vascular/metabolismo , Ensayo de Inmunoadsorción Enzimática , Humanos , Melanoma/patología , Microscopía Fluorescente , PermeabilidadRESUMEN
Turner syndrome (TS) is one of the most common chromosomal abnormalities among girls. Complete monosomy of X chromosome is responsible for almost 50% of all cases of TS, and mosaicism and X anomaly are detected in the other half. It has already been demonstrated that early diagnosis of these children allows appropriate growth hormone treatment with better final height prognosis and introduction of estrogen at an ideal chronological age. Sixty-four short-stature girls were selected and the clinical data obtained were birth weight and height, weight and height at the first medical visit and target height. Other clinical data including cardiac and renal abnormalities, otitis, Hashimoto thyroiditis, cubitus valgus, short neck, widely separated nipples, and pigmented nevi were obtained from the patients' medical records. The aim of the present study was to evaluate the screening of a group of short-stature girls for TS based on the number of CAG repeats of the androgen receptor gene analyzed by GeneScan software. Patient samples with two alleles (heterozygous) were 49/64 (76.5%) and with one allele (homozygous) were 15/64 (23.5%). A karyotype was determined in 30 patients, 9 homozygous and 21 heterozygous. In the homozygous group, 6/9 were 45,X and 3/9 were 46,XX. In the heterozygous group, 17/21 were 46,XX, and 4/21 were TS patients with mosaicism (45,X/46,XX; 45,X/46XiXq; 46XdelXp). The pattern obtained by GeneScan in two patients with mosaicism in the karyotype was an imbalance between the peak heights of the two alleles, suggesting that this imbalance could be present when there is a mosaicism. The frequency of TS abnormalities (18.7%) did not differ between TS and 46,XX girls. Thus, it is important to accurately assess the incidence of TS in growth-retarded girls, even in the absence of other dysmorphisms. In this study, we diagnosed 6 cases of TS 45,X (9.4%) by molecular analysis, with a 100% sensitivity and 85% specificity. This molecular analysis was able to detect all cases of TS 45,X and the majority of mosaicisms, without the need for more X chromosome markers. In conclusion, determining the number of CAG repeats of the androgen receptor gene analyzed by GeneScan was a fast method with high sensitivity for the detection of TS 45,X, suggesting that it could be interesting as a method for screening a population of growth-retarded girls.
Asunto(s)
Estatura/genética , Exones , Receptores Androgénicos/genética , Repeticiones de Trinucleótidos/genética , Síndrome de Turner/diagnóstico , Alelos , Niño , Femenino , Marcadores Genéticos , Heterocigoto , Homocigoto , Humanos , Cariotipificación , Mosaicismo , Sensibilidad y Especificidad , Estadística como Asunto , Factores de TiempoRESUMEN
Turner syndrome (TS) is one of the most common chromosomal abnormalities among girls. Complete monosomy of X chromosome is responsible for almost 50% of all cases of TS, and mosaicism and X anomaly are detected in the other half. It has already been demonstrated that early diagnosis of these children allows appropriate growth hormone treatment with better final height prognosis and introduction of estrogen at an ideal chronological age. Sixty-four short-stature girls were selected and the clinical data obtained were birth weight and height, weight and height at the first medical visit and target height. Other clinical data including cardiac and renal abnormalities, otitis, Hashimoto thyroiditis, cubitus valgus, short neck, widely separated nipples, and pigmented nevi were obtained from the patients medical records. The aim of the present study was to evaluate the screening of a group of short-stature girls for TS based on the number of CAG repeats of the androgen receptor gene analyzed by GeneScan software. Patient samples with two alleles (heterozygous) were 49/64 (76.5%) and with one allele (homozygous) were 15/64 (23.5%). A karyotype was determined in 30 patients, 9 homozygous and 21 heterozygous. In the homozygous group, 6/9 were 45,X and 3/9 were 46,XX. In the heterozygous group, 17/21 were 46,XX, and 4/21 were TS patients with mosaicism (45,X/46,XX; 45,X/46XiXq; 46XdelXp). The pattern obtained by GeneScan in two patients with mosaicism in the karyotype was an imbalance between the peak heights of the two alleles, suggesting that this imbalance could be present when there is a mosaicism. The frequency of TS abnormalities (18.7%) did not differ between TS and 46,XX girls. Thus, it is important to accurately assess the incidence of TS in growth-retarded girls, even in the absence of other dysmorphisms. In this study, we diagnosed 6 cases of TS 45,X (9.4%) by molecular analysis, with a 100% sensitivity and 85% specificity. This molecular analysis was...
Asunto(s)
Humanos , Femenino , Niño , Exones , Estatura/genética , Receptores Androgénicos/genética , Repeticiones de Trinucleótidos/genética , Síndrome de Turner/diagnóstico , Alelos , Marcadores Genéticos , Heterocigoto , Homocigoto , Mosaicismo , Sensibilidad y Especificidad , Estadística como Asunto , Factores de TiempoRESUMEN
The alpha2ß1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2ß1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC) and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of 10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2ß1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2ß1 integrin.
Asunto(s)
Animales , Humanos , Fenómenos Fisiológicos Celulares/efectos de los fármacos , Venenos de Crotálidos/química , Desintegrinas/farmacología , /efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Bothrops , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Desintegrinas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , /fisiología , Inhibidores de Agregación Plaquetaria/aislamiento & purificaciónRESUMEN
The alpha2beta1 integrin is a major collagen receptor that plays an essential role in the adhesion of normal and tumor cells to the extracellular matrix. Alternagin-C (ALT-C), a disintegrin-like protein purified from the venom of the Brazilian snake Bothrops alternatus, competitively interacts with the alpha2beta1 integrin, thereby inhibiting collagen binding. When immobilized in plate wells, ALT-C supports the adhesion of fibroblasts as well as of human vein endothelial cells (HUVEC) and does not detach cells previously bound to collagen I. ALT-C is a strong inducer of HUVEC proliferation in vitro. Gene expression analysis was done using an Affimetrix HU-95A probe array with probe sets of approximately 10,000 human genes. In human fibroblasts growing on collagen-coated plates, ALT-C up-regulates the expression of several growth factors including vascular endothelial growth factor, as well as some cell cycle control genes. Up-regulation of the vascular endothelial growth factor gene and other growth factors could explain the positive effect on HUVEC proliferation. ALT-C also strongly activates protein kinase B phosphorylation, a signaling event involved in endothelial cell survival and angiogenesis. In human neutrophils, ALT-C has a potent chemotactic effect modulated by the intracellular signaling cascade characteristic of integrin-activated pathways. Thus, ALT-C acts as a survival factor, promoting adhesion, migration and endothelial cell proliferation after binding to alpha2beta1 integrin on the cell surface. The biological activities of ALT-C may be helpful as a therapeutic strategy in tissue regeneration as well as in the design of new therapeutic agents targeting alpha2beta1 integrin.
Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de los fármacos , Venenos de Crotálidos/química , Desintegrinas/farmacología , Integrina alfa2beta1/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Animales , Bothrops , Adhesión Celular/efectos de los fármacos , Adhesión Celular/fisiología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Desintegrinas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Humanos , Integrina alfa2beta1/fisiología , Inhibidores de Agregación Plaquetaria/aislamiento & purificaciónRESUMEN
Systemic sporotrichosis is an emerging infection potentially fatal for immunocompromised patients. Adhesion to extracellular matrix proteins is thought to play a crucial role in invasive fungal diseases. Here we report studies of the adhesion of Sporothrix schenckii to the extracellular protein fibronectin (Fn). Both yeast cells and conidia of S. schenckii were able to adhere to Fn as detected by enzyme-linked immunosorbent binding assays. Adhesion of yeast cells to Fn is dose dependent and saturable. S. schenckii adheres equally well to 40-kDa and 120-kDa Fn proteolytic fragments. While adhesion to Fn was increased by Ca(2+), inhibition assays demonstrated that it was not RGD dependent. A carbohydrate-containing cell wall neutral fraction blocked up to 30% of the observed adherence for the yeast cells. The biochemical nature of this fraction suggests the participation of cell surface glycoconjugates in binding by their carbohydrate or peptide moieties. These results provide new data concerning S. schenckii adhesion mechanisms, which could be important in host-fungus interactions and the establishment of sporotrichosis.
Asunto(s)
Fibronectinas/metabolismo , Sporothrix/metabolismo , Animales , Cationes Bivalentes , Pared Celular/metabolismo , Humanos , Monosacáridos/metabolismo , Oligopéptidos/metabolismo , ConejosRESUMEN
The pathogenic fungus Sporothrix schenckii is the causative agent of sporotrichosis. This subcutaneous mycosis may disseminate in immunocompromised individuals and also affect several internal organs and tissues, most commonly the bone, joints and lung. Since adhesion is the first step involved with the dissemination of pathogens in the host, we have studied the interaction between S. schenckii and several extracellular matrix (ECM) proteins. The binding of two morphological phases of S. schenckii, yeast cells and conidia, to immobilized type II collagen, laminin, fibronectin, fibrinogen and thrombospondin was investigated. Poly (2-hydroxyethyl methacrylate) (poly-HEMA) was used as the negative control. Cell adhesion was assessed by ELISA with a rabbit anti-S. schenckii antiserum. The results indicate that both morphological phases of this fungus can bind significantly to type II collagen, fibronectin and laminin in comparison to the binding observed with BSA (used as blocking agent). The adhesion rate observed with the ECM proteins (type II collagen, fibronectin and laminin) was statistically significant (P < 0.05) when compared to the adhesion obtained with BSA. No significant binding of conidia was observed to either fibrinogen or thrombospondin, but yeast cells did bind to the fibrinogen. Our results indicate that S. schenckii can bind to fibronectin, laminin and type II collagen and also show differences in binding capacity according to the morphological form of the fungus.
Asunto(s)
Proteínas de la Matriz Extracelular/metabolismo , Sporothrix/patogenicidad , Adhesión Celular , Colágeno/aislamiento & purificación , Proteínas de la Matriz Extracelular/fisiología , Fibronectinas , Laminina , Sporothrix/fisiología , Esporotricosis/microbiología , TrombospondinasRESUMEN
The pathogenic fungus Sporothrix schenckii is the causative agent of sporotrichosis. This subcutaneous mycosis may disseminate in immunocompromised individuals and also affect several internal organs and tissues, most commonly the bone, joints and lung. Since adhesion is the first step involved with the dissemination of pathogens in the host, we have studied the interaction between S. schenckii and several extracellular matrix (ECM) proteins. The binding of two morphological phases of S. schenckii, yeast cells and conidia, to immobilized type II collagen, laminin, fibronectin, fibrinogen and thrombospondin was investigated. Poly (2-hydroxyethyl methacrylate) (poly-HEMA) was used as the negative control. Cell adhesion was assessed by ELISA with a rabbit anti-S. schenckii antiserum. The results indicate that both morphological phases of this fungus can bind significantly to type II collagen, fibronectin and laminin in comparison to the binding observed with BSA (used as blocking agent). The adhesion rate observed with the ECM proteins (type II collagen, fibronectin and laminin) was statistically significant (P<0.05) when compared to the adhesion obtained with BSA. No significant binding of conidia was observed to either fibrinogen or thrombospondin, but yeast cells did bind to the fibrinogen. Our results indicate that S. schenckii can bind to fibronectin, laminin and type II collagen and also show differences in binding capacity according to the morphological form of the fungus
Asunto(s)
Adhesión Celular , Proteínas de la Matriz Extracelular/metabolismo , Sporothrix/patogenicidad , Colágeno/aislamiento & purificación , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Proteínas de la Matriz Extracelular/fisiología , Fibronectinas , Laminina , Sporothrix/fisiología , Esporotricosis/microbiología , TrombospondinasRESUMEN
The aim of the current paper was to study in the state of Sergipe the population distribution and interactions between two species of Biomphalaria, the snail vectors of Schistosoma mansoni in the northeastern Brazil. Data collected in 1969 showed that B. straminea, with only one exception, was limited to the semi-dry region, while B. glabrata was found to live exclusively in the forest region, both in the state of Sergipe. This spatial distribution seemed to suggest that the above Biomphalaria species used to dominate specific territories. Snail collections made in 1988 in the same 37 places searched in 1969, showed that B. straminea has invaded territories previously occupied by B. glabrata, suggesting that a process of competitive displacement is taking place between these two closely related species. Natural snail infection rates were determined and some ecological aspects of the snail breeding places were registered.