Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 23(1): 353-361, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27392308

RESUMEN

The combination of ocean warming and acidification brings an uncertain future to kelp forests that occupy the warmest parts of their range. These forests are not only subject to the direct negative effects of ocean climate change, but also to a combination of unknown indirect effects associated with changing ecological landscapes. Here, we used mesocosm experiments to test the direct effects of ocean warming and acidification on kelp biomass and photosynthetic health, as well as climate-driven disparities in indirect effects involving key consumers (urchins and rock lobsters) and competitors (algal turf). Elevated water temperature directly reduced kelp biomass, while their turf-forming competitors expanded in response to ocean acidification and declining kelp canopy. Elevated temperatures also increased growth of urchins and, concurrently, the rate at which they thinned kelp canopy. Rock lobsters, which are renowned for keeping urchin populations in check, indirectly intensified negative pressures on kelp by reducing their consumption of urchins in response to elevated temperature. Overall, these results suggest that kelp forests situated towards the low-latitude margins of their distribution will need to adapt to ocean warming in order to persist in the future. What is less certain is how such adaptation in kelps can occur in the face of intensifying consumptive (via ocean warming) and competitive (via ocean acidification) pressures that affect key ecological interactions associated with their persistence. If such indirect effects counter adaptation to changing climate, they may erode the stability of kelp forests and increase the probability of regime shifts from complex habitat-forming species to more simple habitats dominated by algal turfs.


Asunto(s)
Cambio Climático , Cadena Alimentaria , Kelp/crecimiento & desarrollo , Animales , Biomasa , Clima , Ecosistema , Bosques , Nephropidae , Erizos de Mar
2.
J Biol Chem ; 277(6): 3926-34, 2002 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-11724771

RESUMEN

In the present study we report the discovery of a novel protein-mineral complex in the serum of rats treated with doses of the bone-active bisphosphonate etidronate that inhibit normal bone mineralization. The composition of this high molecular mass protein-mineral complex consists of about 18% mineral, 80% fetuin, and 2% matrix Gla protein (MGP) by weight, and the presence of the complex in serum after an injection of 8 mg etidronate/100 g of body weight elevates calcium by 1.8-fold (to 4.3 mm), phosphate by 1.6-fold (to 5.6 mm), and MGP by 25-fold (to 12 microg/ml). The serum mineral complex reaches maximal levels at 6 h after subcutaneous injection of etidronate and is subsequently cleared from serum by 24 h. This highly specific complex of fetuin, MGP, and mineral prevents the growth, aggregation, and precipitation of the mineral component, which indicates that the previously reported calcification inhibitory activities of fetuin and MGP may be related to their ability to form stable complexes with nascent mineral nuclei. Treatment with the vitamin K-antagonist warfarin prevents the increase in serum MGP after etidronate injection, which shows that the increase in serum MGP is due to new synthesis and that the gamma-carboxylation of MGP is necessary for its binding to the serum mineral complex.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/química , Ácido Etidrónico/administración & dosificación , Proteínas de la Matriz Extracelular , Fosfatos/química , alfa-Fetoproteínas/química , Animales , Calcio/sangre , Proteínas de Unión al Calcio/sangre , Centrifugación , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Filtración , Masculino , Peso Molecular , Fosfatos/sangre , Ratas , Ratas Sprague-Dawley , alfa-Fetoproteínas/metabolismo , Proteína Gla de la Matriz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA