RESUMEN
Leishmaniasis is a neglected tropical disease; there is currently no vaccine and treatment is reliant upon a handful of drugs suffering from multiple issues including toxicity and resistance. There is a critical need for development of new fit-for-purpose therapeutics, with reduced toxicity and targeting new mechanisms to overcome resistance. One enzyme meriting investigation as a potential drug target in Leishmania is M17 leucyl-aminopeptidase (LAP). Here, we aimed to chemically validate LAP as a drug target in L. major through identification of potent and selective inhibitors. Using RapidFire mass spectrometry, the compounds DDD00057570 and DDD00097924 were identified as selective inhibitors of recombinant Leishmania major LAP activity. Both compounds inhibited in vitro growth of L. major and L. donovani intracellular amastigotes, and overexpression of LmLAP in L. major led to reduced susceptibility to DDD00057570 and DDD00097924, suggesting that these compounds specifically target LmLAP. Thermal proteome profiling revealed that these inhibitors thermally stabilized two M17 LAPs, indicating that these compounds selectively bind to enzymes of this class. Additionally, the selectivity of the inhibitors to act on LmLAP and not against the human ortholog was demonstrated, despite the high sequence similarities LAPs of this family share. Collectively, these data confirm LmLAP as a promising therapeutic target for Leishmania spp. that can be selectively inhibited by drug-like small molecules.
Asunto(s)
Antiprotozoarios , Leishmania major , Proteínas Protozoarias , Animales , Humanos , Antiprotozoarios/farmacología , Antiprotozoarios/química , Leishmania donovani/enzimología , Leishmania donovani/efectos de los fármacos , Leishmania donovani/genética , Leishmania major/enzimología , Leishmania major/efectos de los fármacos , Leishmania major/genética , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismoRESUMEN
BACKGROUND: Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and leads to ~10,000 deaths each year. Nifurtimox and benznidazole are the only two drugs available but have significant adverse effects and limited efficacy. New chemotherapeutic agents are urgently required. Here we identified inhibitors of the acidic M17 leucyl-aminopeptidase from T. cruzi (LAPTc) that show promise as novel starting points for Chagas disease drug discovery. METHODOLOGY/PRINCIPAL FINDINGS: A RapidFire-MS screen with a protease-focused compound library identified novel LAPTc inhibitors. Twenty-eight hits were progressed to the dose-response studies, from which 12 molecules inhibited LAPTc with IC50 < 34 µM. Of these, compound 4 was the most potent hit and mode of inhibition studies indicate that compound 4 is a competitive LAPTc inhibitor, with Ki 0.27 µM. Compound 4 is selective with respect to human LAP3, showing a selectivity index of >500. Compound 4 exhibited sub-micromolar activity against intracellular T. cruzi amastigotes, and while the selectivity-window against the host cells was narrow, no toxicity was observed for un-infected HepG2 cells. In silico modelling of the LAPTc-compound 4 interaction is consistent with the competitive mode of inhibition. Molecular dynamics simulations reproduce the experimental binding strength (-8.95 kcal/mol), and indicate a binding mode based mainly on hydrophobic interactions with active site residues without metal cation coordination. CONCLUSIONS/SIGNIFICANCE: Our data indicates that these new LAPTc inhibitors should be considered for further development as antiparasitic agents for the treatment of Chagas disease.
Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Leucil Aminopeptidasa/química , Leucil Aminopeptidasa/farmacología , Leucil Aminopeptidasa/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Descubrimiento de Drogas , Antiparasitarios/uso terapéutico , Tripanocidas/uso terapéuticoRESUMEN
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Animales , Humanos , Trypanosoma cruzi/genética , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo , Dasatinib , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Proliferación Celular , Mamíferos/metabolismoRESUMEN
The characterization of protein-protein interactions (PPIs) is of high value for understanding protein function. Two strategies are popular for identification of PPIs direct from the cellular environment: affinity capture (pulldown) isolates the protein of interest with an immobilized matrix that specifically captures the target and potential partners, whereas in BioID, genetic fusion of biotin ligase facilitates proximity biotinylation, and labeled proteins are isolated with streptavidin. Whilst both methods provide valuable insights, they can reveal distinct PPIs, but the basis for these differences is less obvious. Here, we compare both methods using four different trypanosome proteins as baits: poly(A)-binding proteins PABP1 and PABP2, mRNA export receptor MEX67, and the nucleoporin NUP158. With BioID, we found that the population of candidate interacting proteins decreases with more confined bait protein localization, but the candidate population is less variable with affinity capture. BioID returned more likely false positives, in particular for proteins with less confined localization, and identified low molecular weight proteins less efficiently. Surprisingly, BioID for MEX67 identified exclusively proteins lining the inner channel of the nuclear pore complex (NPC), consistent with the function of MEX67, whereas the entire NPC was isolated by pulldown. Similarly, for NUP158, BioID returned surprisingly few PPIs within NPC outer rings that were by contrast detected with pulldown but instead returned a larger cohort of nuclear proteins. These rather significant differences highlight a clear issue with reliance on a single method to identify PPIs and suggest that BioID and affinity capture are complementary rather than alternative approaches.
Asunto(s)
Proteínas , Proteómica , Biotinilación , Poro Nuclear , Proteínas/química , Proteómica/métodos , Estreptavidina/químicaRESUMEN
Gene expression in pathogenic protozoans of the family Trypanosomatidae has several novel features, including multiple eIF4F-like complexes involved in protein synthesis. The eukaryotic eIF4F complex, formed mainly by eIF4E and eIF4G subunits, is responsible for the canonical selection of mRNAs required for the initiation of mRNA translation. The best-known complexes implicated in translation in trypanosomatids are based on two related pairs of eIF4E and eIF4G subunits (EIF4E3/EIF4G4 and EIF4E4/EIF4G3), whose functional distinctions remain to be fully described. Here, to define interactomes associated with both complexes in Trypanosoma brucei procyclic forms, we performed parallel immunoprecipitation experiments followed by identification of proteins co-precipitated with the four tagged eIF4E and eIF4G subunits. A number of different protein partners, including RNA binding proteins and helicases, specifically co-precipitate with each complex. Highlights with the EIF4E4/EIF4G3 pair include RBP23, PABP1, EIF4AI and the CRK1 kinase. Co-precipitated partners with the EIF4E3/EIF4G4 pair are more diverse and include DRBD2, PABP2 and different zinc-finger proteins and RNA helicases. EIF4E3/EIF4G4 are essential for viability and to better define their role, we further investigated their phenotypes after knockdown. Depletion of either EIF4E3/EIF4G4 mRNAs lead to aberrant morphology with a more direct impact on events associated with cytokinesis. We also sought to identify those mRNAs differentially associated with each complex through CLIP-seq with the two eIF4E subunits. Predominant among EIF4E4-bound transcripts are those encoding ribosomal proteins, absent from those found with EIF4E3, which are generally more diverse. RNAi mediated depletion of EIF4E4, which does not affect proliferation, does not lead to changes in mRNAs or proteins associated with EIF4E3, confirming a lack of redundancy and distinct roles for the two complexes.
RESUMEN
In trypanosomatids, transcription is polycistronic and all mRNAs are processed by trans-splicing, with export mediated by noncanonical mechanisms. Although mRNA export is central to gene regulation and expression, few orthologs of proteins involved in mRNA export in higher eukaryotes are detectable in trypanosome genomes, necessitating direct identification of protein components. We previously described conserved mRNA export pathway components in Trypanosoma cruzi, including orthologs of Sub2, a component of the TREX complex, and eIF4AIII (previously Hel45), a core component of the exon junction complex (EJC). Here, we searched for protein interactors of both proteins using cryomilling and mass spectrometry. Significant overlap between TcSub2 and TceIF4AIII-interacting protein cohorts suggests that both proteins associate with similar machinery. We identified several interactions with conserved core components of the EJC and multiple additional complexes, together with proteins specific to trypanosomatids. Additional immunoisolations of kinetoplastid-specific proteins both validated and extended the superinteractome, which is capable of supporting RNA processing from splicing through to nuclear export and cytoplasmic events. We also suggest that only proteomics is powerful enough to uncover the high connectivity between multiple aspects of mRNA metabolism and to uncover kinetoplastid-specific components that create a unique amalgam to support trypanosome mRNA maturation.
Asunto(s)
Proteómica , Trypanosoma cruzi , Transporte Activo de Núcleo Celular , ARN , Empalme del ARN , Transporte de ARNRESUMEN
The British Society for Parasitology (BSP) holds a biannual symposium devoted to the kinetoplastids, and seeks to cover the full gamut of research into these important organisms, and alternates with the Woods Hole Kinetoplastid Molecular Cell Biology meeting that serves a similar community. While normally embedded within the main BSP Spring meeting, on several occasions the symposium has enjoyed the opportunity of being hosted on mainland Europe. In 2020, the BSP was fortunate to spend some time in Granada in Spain, where a superb meeting with excellent science in a spectacular setting was overshadowed by news of an emerging novel coronavirus. In this editorial, we hope to have captured some of that excellent science and to highlight aspects of the many great papers and reviews in this special issue, as well as provide a few images from the meeting, which we hope for this who attended will bring back some fond memories.
Asunto(s)
COVID-19 , Leishmaniasis , Tripanosomiasis , Europa (Continente) , Humanos , SARS-CoV-2 , EspañaRESUMEN
OBJECTIVE: To describe our experience of nine patients with extra-anatomical bypass for clinically ischemic distal limb during repair of acute Type A aortic dissection (ATAAD). METHODS: We retrospectively examined a series of nine patients who underwent surgery for ATAAD. We identified a subset of the patients who presented with concomitant radiographic and clinical signs of lower limb ischemia. All but one patient (axillobifemoral bypass) underwent femorofemoral crossover grafting by the cardiac surgeon during cooling. RESULTS: One hundred eighty-one cases of ATAAD underwent surgery during the study period with a mortality of 19.3%. Nine patients had persistent clinical evidence of lower limb ischemia (4.9%) and underwent extra-anatomical bypass during cooling. Two patients underwent additional fasciotomies. Mean delay from symptoms to surgery in these nine patients was 9.5 hours. Two patients had bilateral amputations despite revascularisation and, of note, had long delays in presentation for surgery (> 12 hours). There were no mortalities during these inpatient episodes. Outpatient radiographic follow-up at the first opportunity demonstrated 100% patency. CONCLUSION: Our experience suggests that, during complicated aortic dissection, limb ischemia may have a devastating outcome including amputation when diagnosis and referral are delayed. Early diagnosis and surgery are crucial in preventing this potentially devastating complication.
Asunto(s)
Disección Aórtica , Enfermedades Vasculares Periféricas , Disección Aórtica/diagnóstico por imagen , Disección Aórtica/cirugía , Femenino , Humanos , Isquemia/diagnóstico por imagen , Isquemia/etiología , Isquemia/cirugía , Estudios Retrospectivos , Volumen Sistólico , Resultado del Tratamiento , Grado de Desobstrucción Vascular , Función Ventricular IzquierdaRESUMEN
Abstract Objective: To describe our experience of nine patients with extra-anatomical bypass for clinically ischemic distal limb during repair of acute Type A aortic dissection (ATAAD). Methods: We retrospectively examined a series of nine patients who underwent surgery for ATAAD. We identified a subset of the patients who presented with concomitant radiographic and clinical signs of lower limb ischemia. All but one patient (axillobifemoral bypass) underwent femorofemoral crossover grafting by the cardiac surgeon during cooling. Results: One hundred eighty-one cases of ATAAD underwent surgery during the study period with a mortality of 19.3%. Nine patients had persistent clinical evidence of lower limb ischemia (4.9%) and underwent extra-anatomical bypass during cooling. Two patients underwent additional fasciotomies. Mean delay from symptoms to surgery in these nine patients was 9.5 hours. Two patients had bilateral amputations despite revascularisation and, of note, had long delays in presentation for surgery (> 12 hours). There were no mortalities during these inpatient episodes. Outpatient radiographic follow-up at the first opportunity demonstrated 100% patency. Conclusion: Our experience suggests that, during complicated aortic dissection, limb ischemia may have a devastating outcome including amputation when diagnosis and referral are delayed. Early diagnosis and surgery are crucial in preventing this potentially devastating complication.
Asunto(s)
Humanos , Femenino , Enfermedades Vasculares Periféricas , Disección Aórtica/cirugía , Disección Aórtica/diagnóstico por imagen , Volumen Sistólico , Grado de Desobstrucción Vascular , Estudios Retrospectivos , Función Ventricular Izquierda , Resultado del Tratamiento , Isquemia/cirugía , Isquemia/etiología , Isquemia/diagnóstico por imagenRESUMEN
Trypanosomatids regulate gene expression mainly at the post-transcriptional level through processing, exporting and stabilising mRNA and control of translation. In most eukaryotes, protein synthesis is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2) at serine 51. Phosphorylation halts overall translation by decreasing availability of initiator tRNAmet to form translating ribosomes. In trypanosomatids, the N-terminus of eIF2α is extended with threonine 169 the homologous phosphorylated residue. Here, we evaluated whether eIF2α phosphorylation varies during the Trypanosoma cruzi life cycle, the etiological agent of Chagas' disease. Total levels of eIF2α are diminished in infective and non-replicative trypomastigotes compared with proliferative forms from the intestine of the insect vector or amastigotes from mammalian cells, consistent with decreased protein synthesis reported in infective forms. eIF2α phosphorylation increases in proliferative intracellular forms prior to differentiation into trypomastigotes. Parasites overexpressing eIF2αT169A or with an endogenous CRISPR/Cas9-generated eIF2αT169A mutation were created and analysis revealed alterations to the proteome, largely unrelated to the presence of µORF in epimastigotes. eIF2αT169A mutant parasites produced fewer trypomastigotes with lower infectivity than wild type, with increased levels of sialylated mucins and oligomannose glycoproteins, and decreased galactofuranose epitopes and the surface protease GP63 on the cell surface. We conclude that eIF2α expression and phosphorylation levels affect proteins relevant for intracellular progression of T. cruzi.
Asunto(s)
Enfermedad de Chagas/parasitología , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Animales , Sistemas CRISPR-Cas , Línea Celular , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/genética , Regulación de la Expresión Génica , Humanos , Estadios del Ciclo de Vida , Mutación , Parasitemia , Fosforilación , Biosíntesis de Proteínas , Proteoma/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/biosíntesis , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad , VirulenciaRESUMEN
Leucyl aminopeptidases (LAPs) are involved in multiple cellular functions, which, in the case of infectious diseases, includes participation in the pathogen-host cell interface and pathogenesis. Thus, LAPs are considered good candidate drug targets, and the major M17-LAP from Trypanosoma cruzi (LAPTc) in particular is a promising target for Chagas disease. To exploit LAPTc as a potential target, it is essential to develop potent and selective inhibitors. To achieve this, we report a high-throughput screening method for LAPTc. Two methods were developed and optimized: a Leu-7-amido-4-methylcoumarin-based fluorogenic assay and a RapidFire mass spectrometry (RapidFire MS)-based assay using the LSTVIVR peptide as substrate. Compared with a fluorescence assay, the major advantages of the RapidFire MS assay are a greater signal-to-noise ratio as well as decreased consumption of enzyme. RapidFire MS was validated with the broad-spectrum LAP inhibitors bestatin (IC50 = 0.35 µM) and arphamenine A (IC50 = 15.75 µM). We suggest that RapidFire MS is highly suitable for screening for specific LAPTc inhibitors.