RESUMEN
The chemical composition, antioxidant activity (AA), cytotoxic activity, antihemolytic effects, and enzyme inhibition (EI) of lyophilized jabuticaba (Myrciaria jaboticaba) seed extract (LJE) was studied. The main compounds found were castalagin, vescalagin, procyanidin A2, and ellagic acid. LJE was more toxic to cancer cells than to normal cells, meaning relative toxicological safety. This cytotoxic effect can be attributed to the pro-oxidant effect observed in the reactive oxygen species (ROS) generation assay. LJE inhibited α-amylase, α-glucosidase, and ACE-I activities and protected human erythrocytes from hemolysis. LJE was incorporated into yogurts at different concentrations and the total phenolic content, AA, and EI increased in a dose-dependent manner. LJE-containing yogurt presented 86% sensory acceptance. The yogurt was administered to Wistar rats bearing cancer and it modulated the gut bacterial microbiota, having a prebiotic effect. LJE is a potential functional ingredient for food companies looking for TPC, AA, and prebiotic effect in vivo.
Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Myrtaceae/química , Polifenoles/farmacología , Yogur , 1,2-Dimetilhidrazina/toxicidad , Inhibidores de la Enzima Convertidora de Angiotensina/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Animales , Antioxidantes/química , Antioxidantes/farmacología , Catequina/análisis , Catequina/farmacología , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/microbiología , Humanos , Taninos Hidrolizables/análisis , Taninos Hidrolizables/farmacología , Masculino , Fenoles/análisis , Extractos Vegetales/análisis , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/análisis , Proantocianidinas/análisis , Proantocianidinas/farmacología , Ratas Wistar , Semillas/química , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
The aim of this study was to evaluate the effects of different solvents and maximize the extraction of bioactive compounds from jabuticaba (Myrciaria cauliflora) seeds. In general, the solvent system composed of water and propanone (52:48 v/v) modified the extract polarity and increased extraction yield of bioactive compounds. The optimized extract presented antioxidant capacity measured by different chemical and biological assays. The optimized extract exerted antiproliferative and cytotoxic effects against A549 and HCT8 cells, antimicrobial and antihemolytic effects, inhibited α-amylase/α-glucosidase activities and presented in vitro antihypertensive effect. Nonetheless, the optimized extract showed no cytotoxicity in a human cell model (IMR90). Vescalagin, castalagin and ellagic acid were the major phenolic compounds in the optimized extract. Our results show that jabuticaba seed may be a potential ingredient for the development of potentially functional foods.
Asunto(s)
Myrtaceae/embriología , Fenoles/análisis , Extractos Vegetales/farmacología , Semillas/química , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antiinfecciosos/farmacología , Antihipertensivos/farmacología , Antineoplásicos Fitogénicos/farmacología , Antioxidantes/farmacología , Línea Celular Tumoral , Humanos , Hipoglucemiantes/farmacología , Peroxidación de Lípido/efectos de los fármacos , Pruebas de Sensibilidad MicrobianaRESUMEN
Camu-camu (Myrciaria dubia) seeds are discarded without recovering the bioactive compounds. The main aim of the present work was to optimise the solvent mixture to extract higher total phenolic content and antioxidant capacity of camu-camu seeds. The optimised solvent system increased the extraction of phenolic compounds, in which vescalagin and castalagin were the main compounds. The optimised extract displayed antioxidant capacity measured by different chemical and biological assays, exerted antiproliferative and cytotoxic effects against A549 and HCT8 cancer cells, antimicrobial effects, protected human erythrocytes against hemolysis, inhibited α-amylase and α-glucosidase enzymes and presented in vitro antihypertensive effect. Additionally, the optimized extract inhibited human LDL copper-induced oxidation in vitro and reduced the TNF-α release and NF-κB activation in macrophages cell culture. Thus, the use of camu-camu seed showed to be a sustainable way to recover bioactive compounds with in vitro functional properties.
Asunto(s)
Myrtaceae/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Animales , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antihipertensivos/química , Antihipertensivos/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Hemólisis/efectos de los fármacos , Humanos , Taninos Hidrolizables/análisis , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Fenoles/análisis , Semillas/química , alfa-Amilasas/antagonistas & inhibidoresRESUMEN
This work aimed to characterize the phenolic composition and in vitro antioxidant and antiproliferative properties of lyophilized camu-camu (Myrciaria dubia) seed extract (LCE), and to assess the effects of LCE on the antioxidant and sensory traits of yogurt. The LCE contained 46.3% (wt/wt) total phenolic content; the main compounds quantified were vescalagin, castalagin, gallic acid, procyanidin A2, and (-)-epicatechin. The LCE had antioxidant activity, as measured by different chemical assays (2,2-diphenyl-1-picrylhydrazyl, Folin-Ciocalteu reducing capacity, total reducing capacity, ferric reducing antioxidant power, and Cu2+ chelating capacity), and inhibited the cell proliferation of HepG2 cells (human hepatoma carcinoma; IC50 = 1,116 µg/mL) and Caco-2 cells (human colorectal adenocarcinoma epithelial cells; IC50 = 608.5 µg/mL). In addition, LCE inhibited the in vitro activity of α-amylase, α-glucosidase, and angiotensin-converting enzyme, and protected DNA from peroxyl radical-induced scission. When added to yogurts, different concentrations of LCE (0, 0.25, 0.5, 0.75, and 1.0 g/100 g) increased the chemical antioxidant and reducing capacities. The camu-camu yogurt containing LCE at 0.25 g/100 g had an acceptance index of 84%, showing that camu-camu seed extract may be a potential ingredient for addition to yogurts.
Asunto(s)
Antioxidantes/farmacología , Myrtaceae/química , Extractos Vegetales/farmacología , Yogur , Antioxidantes/aislamiento & purificación , Células CACO-2 , Catequina/análisis , Células Hep G2 , Humanos , Taninos Hidrolizables/análisis , Fenoles/análisis , Proantocianidinas/análisis , Semillas/químicaRESUMEN
The circular economy is an umbrella concept that applies different mechanisms aiming to minimize waste generation, thus decoupling economic growth from natural resources. Each year, an estimated one-third of all food produced is wasted; this is equivalent to 1.3 billion tons of food, which is worth around US$1 trillion or even $2.6 trillion when social and economic costs are included. In the fruit and vegetable sector, 45% of the total produced amount is lost in the production (post-harvest, processing, and distribution) and consumption chains. Therefore, it is necessary to find new technological and environmentally friendly solutions to utilize fruit wastes as new raw materials to develop and scale up the production of high value-added products and ingredients. Considering that the production and consumption of fruits has increased in the last years and following the need to find the sustainable use of different fruit side streams, this work aimed to describe the chemical composition and bioactivity of different fruit seeds consumed worldwide. A comprehensive focus is given on the extraction techniques of water-soluble and lipophilic compounds and in vitro/in vivo functionalities, and the link between chemical composition and observed activity is holistically explained.
Asunto(s)
Agricultura/economía , Frutas/química , Fitoquímicos/química , Semillas/química , Antioxidantes/química , Humanos , Residuos Industriales/economíaRESUMEN
Camu-camu (Myrciaria dubia) pulp, seeds, and skin are widely known because of their nutritional properties. However, the seed coat has never been studied as a source of bioactive compounds. Herein, we characterized the phenolic composition, the antioxidant activity, and inhibition of angiotensin-converting enzyme (ACE) of three different extracts (water, propanone, and ethanol) from this residue and assessed the structure-activity using bivariate and multivariate statistical approaches. Phenolic acids and flavonoids were quantified by high-performance liquid chromatography while the ferric reducing antioxidant power (FRAP), inhibition of lipid peroxidation using egg yolk and Wistar rat brain, scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPHâ¢) radical, Folin-Ciocalteu reducing capacity (FCRC), and the inhibition of angiotensin-converting enzyme (ACE) by the extracts were also analyzed. t-Resveratrol was found in camu-camu seed coat for the first time. The aqueous extract had the highest total phenolic content, FRAP, DPPHâ¢, FCRC, and inhibition of lipid oxidation using both chemical and biological assays, while the propanone extract showed the opposite behavior but it presented higher in vitro antihypertensive activity. The ethanolic extract exhibited intermediate values for the responses. The association between chemical composition and the functional properties of the camu-camu seed coat extracts were revealed using correlation analysis and principal component analysis.