RESUMEN
The worldwide expansion of chikungunya virus (CHIKV) into tropical and subtropical areas in the last 15 years has posed a currently unmet need for vaccines and therapeutics. The E2-E1 envelope glycoprotein complex binds receptors on the host cell and promotes membrane fusion during CHIKV entry, thus constituting an attractive target for the development of antiviral drugs. In order to identify CHIKV antivirals acting through inhibition of the envelope glycoprotein complex function, our first approach was to search for amenable druggable sites within the E2-E1 heterodimer. We identified a pocket located in the interface between E2 and E1 around the fusion loop. Then, via a structure-based virtual screening approach and in vitro assay of antiviral activity, we identified compound 7 as a specific inhibitor of CHIKV. Through a lead optimization process, we obtained compound 11 that demonstrated increased antiviral activity and low cytotoxicity (EC50 1.6 µM, CC50 56.0 µM). Molecular dynamics simulations were carried out and described a possible interaction pattern of compound 11 and the E1-E2 dimer that could be useful for further optimization. As expected from target site selection, compound 11 inhibited virus internalization during CHIKV entry. In addition, virus populations resistant to compound 11 included mutation E2-P173S, which mapped to the proposed binding pocket, and second site mutation E1-Y24H. Construction of recombinant viruses showed that these mutations conferred antiviral resistance in the parental background. Finally, compound 11 presents acceptable solubility values and is chemically and enzymatically stable in different media. Altogether, these findings uncover a suitable pocket for the design of CHIKV entry inhibitors with promising antiviral activity and pharmacological profiles.
Asunto(s)
Virus Chikungunya , Diseño de Fármacos , Proteínas del Envoltorio Viral/antagonistas & inhibidores , Virus Chikungunya/efectos de los fármacos , Envoltura Viral , Proteínas del Envoltorio Viral/genéticaRESUMEN
Bovine viral diarrhea virus (BVDV) belongs to the Pestivirus genus (Flaviviridae). In spite of the availability of vaccines, the virus is still causing substantial financial losses to the livestock industry. In this context, the use of antiviral agents could be an alternative strategy to control and reduce viral infections. The viral RNA-dependent RNA polymerase (RdRp) is essential for the replication of the viral genome and constitutes an attractive target for the identification of antiviral compounds. In a previous work, we have identified potential molecules that dock into an allosteric binding pocket of BVDV RdRp via a structure-based virtual screening approach. One of them, N-(2-morpholinoethyl)-2-phenylquinazolin-4-amine [1, 50% effective concentration (EC50) = 9.7 ± 0.5 µM], was selected to perform different chemical modifications. Among 24 derivatives synthesized, eight of them showed considerable antiviral activity. Molecular modeling of the most active compounds showed that they bind to a pocket located in the fingers and thumb domains in BVDV RdRp, which is different from that identified for other non-nucleoside inhibitors (NNIs) such as thiosemicarbazone (TSC). We selected compound 2-[4-(2-phenylquinazolin-4-yl)piperazin-1-yl]ethanol (1.9; EC50 = 1.7 ± 0.4 µM) for further analysis. Compound 1.9 was found to inhibit the in vitro replication of TSC-resistant BVDV variants, which carry the N264D mutation in the RdRp. In addition, 1.9 presented adequate solubility in different media and a high-stability profile in murine and bovine plasma.