Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Biochem Biotechnol ; 196(2): 1104-1121, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37335458

RESUMEN

The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.


Asunto(s)
Antibacterianos , Nanopartículas del Metal , Antibacterianos/química , Plata/farmacología , Plata/química , Schinus , Nanopartículas del Metal/química , Escherichia coli , Especies Reactivas de Oxígeno , Bacterias Gramnegativas , Bacterias Grampositivas , Bacterias , Extractos Vegetales/farmacología , Extractos Vegetales/química , Pruebas de Sensibilidad Microbiana
2.
Biochim Biophys Acta Biomembr ; 1863(6): 183597, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652005

RESUMEN

This review summarizes the theory of zeta potential (ZP) and the most relevant data about how it has been used for studying bacteria. We have especially focused on the discovery and characterization of novel antimicrobial compounds. The ZP technique may be considered an indirect tool to estimate the surface potential of bacteria, a physical characteristic that is key to maintaining optimal cell function. For this reason, targeting the bacterial surface is of paramount interest in the development of new antimicrobials. Surface-acting agents have been found to display a remarkable bactericidal effect and have simultaneously revealed a low tendency to trigger resistance. Changes in the bacterial surface as a result of various processes can also be followed by ZP measurements. However, due to the complexity of the bacterial surface, some considerations regarding the assessment of ZP must first be taken into account. Evidence on the application of ZP measurements to the characterization of bacteria and biofilm formation is presented next. We finally discuss the feasibility of using the ZP technique to assess antimicrobial-induced changes in the bacterial surface. Among these changes are those related to the interaction of the agent with different components of the cell envelope, membrane permeabilization, and loss of viability.


Asunto(s)
Antibacterianos/química , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Antibacterianos/metabolismo , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Pared Celular/química , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/toxicidad , Propiedades de Superficie
3.
Biochim Biophys Acta Biomembr ; 1861(6): 1086-1092, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902625

RESUMEN

The use of silver nanoparticles (AgNPs) with their novel and distinct physical, chemical, and biological properties, has proven to be an alternative for the development of new antibacterial agents. In particular, the possibility to generate AgNPs coated with novel capping agents, such as phytomolecules obtained via a green synthesis (G-AgNPs), is attracting great attention in scientific research. Recently, we showed that membrane interactions seem to be involved in the antibacterial activity of AgNPs obtained via a green chemical synthesis using the aqueous leaf extract of chicory (Cichorium intybus L.). Furthermore, we observed that these G-AgNPs exhibited higher antibacterial activity than those obtained by chemical synthesis. In order to achieve the green AgNPs mode of action as well as their cellular target, we aimed to study the antibacterial activity of this novel green AgNPs against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The effect of the G-AgNPs on the bacterial surface was first evaluated by zeta potential measurements and correlated with direct plate count agar method. Afterwards, atomic force microscopy was applied to directly unravel the effects of these G-AgNPs on bacterial envelopes. Overall, the data obtained in this study seems correlate with a multi-step mechanism by which G-AgNPs-lipid membrane interactions is the first step prior to membrane disruption, resulting in antibacterial activity.


Asunto(s)
Bacterias/química , Nanopartículas del Metal/química , Plata/química , Microscopía de Fuerza Atómica , Propiedades de Superficie
4.
Colloids Surf B Biointerfaces ; 171: 320-326, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30055472

RESUMEN

Silver nanoparticles (AgNPs) constitute a very promising approach for overcoming the emergence of antibiotic resistance bacteria. Although their mode of action could be related with membrane damage, the AgNPs-lipid membrane interaction is still unclear. In this sense, the present work investigated the interaction of model lipid membranes with AgNPs coated with different capping agents such as citrate (C-AgNPs) and phytomolecules (G-AgNPs) obtained via a green synthesis. The AgNPs-membrane interactions were evaluated studying i) the surface pressure changes on both zwitterionic (DMPC) and negatively charged (DMPC:DMPG) lipid monolayers, ii) the zeta potential and DLS of DMPC:DMPG liposomes and iii) Zeta potential on Escherichia coli membranes, incubated with this nanomaterials. The results showed that both negatively charged-AgNPs can interact with these lipid monolayers inducing an increase in the surface pressure but G-AgNPs presented a significantly higher affinity toward both monolayers in comparison with C-AgNPs. Zeta potential data confirmed again the interaction event showing that both DMPC:DMPG liposomes and E. coli bacteria became more negative with the addition of G-AgNPs. This increased net negative charge of the liposomes and E. coli allows to indicate an interfacial interaction where the green nanometal should keep adsorbed to the membrane via the insertion of aromatic/hydrophobic moieties of capping agents on the surface of AgNPs into the lipid bilayer. Summarizing, the AgNPs-membrane interaction should be an essential step in the antibacterial activity either because the membrane is the main target or by increasing the local concentration of silver from G-AgNPs accumulation which could cause the bactericidal effect.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/efectos de los fármacos , Escherichia coli/citología , Nanopartículas del Metal/química , Plata/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Tamaño de la Partícula , Plata/química , Tensión Superficial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA