Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Electrophoresis ; 44(19-20): 1595-1606, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625008

RESUMEN

The use of nucleic acids (NAs) has revolutionized medical approaches and ushered in a new era of combating various diseases. Accordingly, there is an increasing demand for accurate identification, localization, quantification, and characterization of NAs encapsulated in nonviral or viral vectors. The vast spectrum of molecular dimensions and intra- and intermolecular interactions presents a formidable obstacle for NA analytical development. Typically, the comprehensive analysis of encapsulated NAs, free NAs, and their spatial distribution poses a challenge that is seldom tackled in its complete complexity. The identification of appropriate physicochemical methodologies for large nonencapsulated or encapsulated NAs is particularly intricate and necessitates an evaluation of the analytical outcomes and their appropriateness in addressing critical quality attributes. In this work, we examine the analytics of non-encapsulated or encapsulated large NAs (>500 nucleotides) utilizing capillary electrophoresis (CE) and liquid chromatography (LC) methodologies such as free zone CE, gel CE, affinity CE, and ion pair high-performance liquid chromatography (HPLC). These methodologies create a complete picture of the NA's critical quality attributes, including quantity, identity, purity, and content ratio.

2.
J Colloid Interface Sci ; 648: 488-496, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37302232

RESUMEN

A surface-engineered cell-derived nanocarrier was developed for efficient cytosolic delivery of encapsulated biologically active molecules inside living cells. Thus, a combination of aromatic-labeled and cationic lipids, instrumental in providing fusogenic properties, was intercalated into the biomimetic shell of self-assembled nanocarriers formed from cell membrane extracts. The nanocarriers were loaded, as a proof of concept, with either bisbenzimide molecules, a fluorescently labeled dextran polymer, the bicyclic heptapeptide phalloidin, fluorescently labeled polystyrene nanoparticles or a ribonucleoprotein complex (Cas9/sgRNA). The demonstrated nanocarriers fusogenic behavior relies on the fusogen-like properties imparted by the intercalated exogenous lipids, which allows for circumventing lysosomal storage, thereby leading to efficient delivery into the cytosolic milieu where cargo regains function.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , ARN Guía de Sistemas CRISPR-Cas , Citosol/metabolismo , Lípidos/química , Nanopartículas/química , Portadores de Fármacos/química
3.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G109-G120, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32508154

RESUMEN

Crohn's disease (CD) is a complex and multifactorial illness. There are still considerable gaps in our knowledge regarding its pathophysiology. A transcriptomic approach could shed some light on little-known biological alterations of the disease. We therefore aimed to explore the ileal transcriptome to gain knowledge about CD. We performed whole transcriptome gene expression analysis on ileocecal resections from CD patients and inflammatory bowel disease-free controls, as well as on a CD-independent cohort to replicate selected results. Normalized data were hierarchically clustered, and gene ontology and the molecular network were studied. Cell cultures and molecular methods were used for further evaluations. Genome-wide expression data analysis identified a robust transmembrane immunoglobulin domain-containing 1 (TMIGD1) gene underexpression in CD tissue, which was even more marked in inflamed ileum, and which was replicated in the validation cohort. Immunofluorescence showed TMIGD1 to be located in the apical microvilli of well-differentiated enterocytes but not in intestinal crypt. This apical TMIGD1 was lower in the noninflamed tissue and almost disappeared in the inflamed mucosa of surgical resections. In vitro studies showed hypoxic-dependent TMIGD1 decreased its expression in enterocyte-like cells. The gene enrichment analysis linked TMIGD1 with cell recovery and tissue remodeling in CD settings, involving guanylate cyclase activities. Transcriptomics may be useful for finding new targets that facilitate studies of the CD pathology. This is how TMIGD1 was identified in CD patients, which was related to multiciliate ileal epithelial cell differentiation.NEW & NOTEWORTHY This is a single-center translational research study that aimed to look for key targets involved in Crohn's disease and define molecular pathways through different functional analysis strategies. With this approach, we have identified and described a novel target, the almost unknown TMIGD1 gene, which may be key in the recovery of injured mucosa involving intestinal epithelial cell differentiation.


Asunto(s)
Enfermedad de Crohn/genética , Células Epiteliales/fisiología , Íleon/citología , Glicoproteínas de Membrana/metabolismo , Transcriptoma , Adulto , Células CACO-2 , Estudios de Casos y Controles , Diferenciación Celular , Enfermedad de Crohn/metabolismo , Regulación de la Expresión Génica , Humanos , Inflamación/metabolismo , Glicoproteínas de Membrana/genética , Consumo de Oxígeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA