Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 3482, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241757

RESUMEN

In this work, friction-stir welding (FSW) was employed to alloy 625 grade I (soft annealed) sheets. Therefore, solid-state based welding was undertaken with a tool rotational speed of 200 rpm and a welding speed of 1 mm/s. Microstructural features were analyzed by light optical and scanning electron microscopy (LOM and SEM). Moreover, microhardness measurements were performed. The susceptibility to intergranular corrosion was verified by the double-loop electrochemical potentiokinetic reactivation (DL-EPR) test. Complementary, intergranular corrosion was also evaluated by the ASTM G28 Method A. FSW promoted grain refinement, increased microhardness, and reduction in the degree of sensitization. Finally, the mean corrosion rate observed in the ASTM G28 Method A test was 0.4406 mm/year, which suggests a good weld quality.

2.
Chemosphere ; 279: 130832, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34134432

RESUMEN

Contamination of water by nitrate has become a worldwide problem, being high levels of this ion detected in the surface, and groundwater, mainly due to the intensive use of fertilizers, and to the discharge of not properly treated effluents. This study aims to evaluate the electrocatalytic process, carried out in a cell divided into two compartments by a cation exchange membrane, and with a copper plate electrode as cathode, identifying the effects of current density, pH, the use of a catalyst in the nitrate reduction, and the production of gaseous compounds. The highest nitrate reduction was obtained with a current density of 2.0 mA cm-2, without pH adjustment and, in this condition, nitrite ion was mainly formed. The application of activated carbon fibers with palladium (1% wt. and 3% wt.) in an alkaline medium presented an increase in gaseous compounds formation. With 2.0 mA cm-2, pH adjustment, and applying 3% wt. Pd catalyst, the highest selectivity to gaseous compounds was obtained (95%) with no nitrite detection. These results highlight the viability of using the process developed at this work for the treatment of nitrate contaminated waters.


Asunto(s)
Carbón Orgánico , Nitratos , Fibra de Carbono , Catálisis , Nitritos
3.
Chemosphere ; 248: 126062, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32032880

RESUMEN

Glucocorticoids are widely used to treat a variety of diseases. Consequently, these compounds have been found in water and wastewater matrix. Despite studies have proven its toxicity, just a few works investigate techniques to degrade and mineralize them. To solve this issue, this work presents the degradation and mineralization of prednisone (PRED) by electrochemical advanced oxidation (EAO) using a boron-doped diamond supported on niobium (Nb/BDD) anode in synthetic and real wastewater. Cyclic voltammetry (CV) was performed to investigate the PRED oxidation mechanisms. CV suggest that PRED will be oxidized via HO• and other oxidants generated from the ions present in the liquid matrix (S2O82-, SO4•-, HClO, ClO- etc.). Different EAO conditions as initial pH (3, 7 and 11) and applied current densities (5, 10 and 20 mA cm-2) were evaluated. The best result was obtained at alkaline pH (11) and a current density of 20 mA cm-2, achieving 78% of degradation and 42% of mineralization. Using the best conditions, the EAO was applied as a polishing treatment stage to remove PRED from a biological pre-treated municipal wastewater spiked with PRED. The results indicate that EAO applied in the real matrix provides better results than the synthetic solution, probably associated with the presence of ions that can be electrochemically converted into oxidant species, resulting in higher kinetic constant, mineralization current efficiency and lower energetic consumption. Therefore, the EAO process without the addition of chemicals has proven to be an effective alternative as a tertiary treatment of municipal wastewater contaminated with PRED.


Asunto(s)
Niobio , Prednisona , Contaminantes Químicos del Agua , Boro/química , Diamante/química , Electrodos , Cinética , Modelos Químicos , Niobio/química , Oxidantes , Oxidación-Reducción , Prednisona/química , Aguas Residuales/química , Agua/química , Contaminantes Químicos del Agua/química
4.
Environ Technol ; 39(22): 2835-2847, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28818018

RESUMEN

Water with high concentration of nitrate may cause damage to health and to the environment. This study investigated how concentration, current density, flow, pH, the use of Pd/In catalyst and operating mode (constant current density and constant cell potential) have an influence in the electrochemical reduction of nitrate and in the formation of gaseous compounds using copper electrode. Experiments were performed in two-compartment electrolytic cells separated by a cationic membrane with nitrate model solutions prepared as a surrogate of concentrated brines from membrane desalination plants. The results show that the electroreduction process has potential for reduction of nitrate and that it is influenced by the operational conditions. The best conditions found for the treatment - with satisfactory reduction of nitrate, formation of gaseous compounds and reproducibility - were at nitrate concentrations of 600 and 1000 mg L-1, current density of 1.1 mA cm-2 and without pH control, since in these conditions the production of gaseous compounds is higher than the production of nitrite. When Pd/In catalyst was used, the nitrate reduction was 50% after 6 h of experiment and the predominant product were gaseous compounds. When compared to the experiment without the catalyst, the arrangement with Pd/In was the most efficient one.


Asunto(s)
Cobre , Nitratos , Catálisis , Electrodos , Reproducibilidad de los Resultados
5.
Environ Sci Pollut Res Int ; 23(19): 19237-45, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27364484

RESUMEN

The photoelectrocatalytic (PEC) degradation of 4-nonylphenol ethoxylate (NP4EO) using a low, moderate, or high UV photon flux in different treatment times was investigated. The byproducts were verified using gas chromatography with flame ionization detection (GC-FID) and gas chromatography with quadrupole mass analyzer (GC-qMS). The GC results showed that the use of a low (2.89 µmol m(-2)s(-1)) or a high (36.16 µmol m(-2)s(-1)) UV photon flux reaching the anode surface was associated to the production of alcohols and the toxic byproduct nonylphenol (NP), leading to the same degradation pathway. Meanwhile, the use of a moderate UV photon flux (14.19 µmol m(-2)s(-1)) reaching the anode surface did not produce alcohols or the NP toxic byproduct. This study demonstrates that different UV photon fluxes will have an influence in the degradation of NP4EO with or without generation of toxic byproducts. Furthermore, it is concluded that, after the determination of the UV photon flux able to degrade NP4EO without NP formation, the treatment time is essential in removal of NP4EO, since increasing the treatment time of 4 to 10 h, when using the PEC best conditions (moderate UV photon flux), implies in a higher treatment efficiency.


Asunto(s)
Disruptores Endocrinos/química , Fenoles/química , Fotones , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Electrólisis , Disruptores Endocrinos/efectos de la radiación , Ionización de Llama , Cromatografía de Gases y Espectrometría de Masas , Fenoles/efectos de la radiación , Fotólisis , Factores de Tiempo , Contaminantes Químicos del Agua/efectos de la radiación
6.
Environ Sci Technol ; 43(24): 9130-5, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-20000502

RESUMEN

Biologically treated effluents from the leather industry pose severe problems for the environment due in part to both the inorganic charge and the high nitrogen content associated with the organic charge. Pressure-driven membrane processes, namely ultrafiltration/nanofiltration (UF/NF) technology, were investigated for their selective retention of the organics and permeation of the inorganic fraction. Permeation experiments were carried out with two model solutions representative of a treated tannery effluent. UF and NF of these model solutions were assessed in terms of both their inorganic/organic fractionation capability and their permeation productivity. The UF membranes with MWCOs ranging from 10,000 to 1000 Da yield retentate streams enriched in organic compounds and permeate streams enriched in salts. Despite their high capacity for pure water permeation, they displayed low permeation fluxes, as the result of concentration polarization and fouling phenomena. NF 200 and NF 270 membranes associated fractionation capability with high permeation rates. Furthermore, these membranes demonstrated the highest permeate fluxes -30 kg/h/m(2) and 16 kg/h/m(2) for different model solutions, at the transmembrane pressure of 8 bar. Although these membranes had lower hydraulic permeabilities relative to the other membranes tested, they exhibited the best characteristics in terms of minimization of colloidal fouling.


Asunto(s)
Residuos Industriales , Curtiembre , Ultrafiltración/métodos , Eliminación de Residuos Líquidos/métodos , Animales , Industrias/métodos , Sales (Química)/química , Ultrafiltración/instrumentación , Contaminantes Químicos del Agua
7.
J Hazard Mater ; 137(3): 1704-9, 2006 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-16757116

RESUMEN

The constant growth in generation of solid wastes stimulates studies of recycling processes. The electronic scrap is part of this universe of obsolete and/or defective materials that need to be disposed of more appropriately, or then recycled. In this work, printed circuit boards, that are part of electronic scrap and are found in almost all electro-electronic equipments, were studied. Printed circuit boards were collected in obsolete or defective personal computers that are the largest source of this kind of waste. Printed circuit boards are composed of different materials such as polymers, ceramics and metals, which makes the process more difficult. However, the presence of metals, such as copper and precious metals encourage recycling studies. Also the presence of heavy metals, as Pb and Cd turns this scrap into dangerous residues. This demonstrates the need to search for solutions of this kind of residue, in order to have it disposed in a proper way, without harming the environment. At the first stage of this work, mechanical processing was used, as comminution followed by size, magnetic and electrostatic separation. By this process it was possible to obtain a concentrated fraction in metals (mainly Cu, Pb and Sn) and another fraction containing polymers and ceramics. The copper content reached more than 50% in mass in most of the conductive fractions and significant content of Pb and Sn. At the second stage, the fraction concentrated in metals was dissolved with acids and treated in an electrochemical process in order to recover the metals separately, especially copper. The results demonstrate the technical viability of recovering copper using mechanical processing followed by an electrometallurgical technique. The copper content in solution decayed quickly in all the experiments and the copper obtained by electrowinning is above 98% in most of the tests.


Asunto(s)
Cobre/química , Electroquímica , Magnetismo , Metalurgia , Tamaño de la Partícula , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA