Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 11(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35684292

RESUMEN

Projected rises in atmospheric CO2 concentration and minimum night-time temperatures may have important effects on plant carbon metabolism altering the carbon balance of the only two vascular plant species in the Antarctic Peninsula. We assessed the effect of nocturnal warming (8/5 °C vs. 8/8 °C day/night) and CO2 concentrations (400 ppm and 750 ppm) on gas exchange, non-structural carbohydrates, two respiratory-related enzymes, and mitochondrial size and number in two species of vascular plants. In Colobanthus quitensis, light-saturated photosynthesis measured at 400 ppm was reduced when plants were grown in the elevated CO2 or in the nocturnal warming treatments. Growth in elevated CO2 reduced stomatal conductance but nocturnal warming did not. The short-term sensitivity of respiration, relative protein abundance, and mitochondrial traits were not responsive to either treatment in this species. Moreover, some acclimation to nocturnal warming at ambient CO2 was observed. Altogether, these responses in C. quitensis led to an increase in the respiration-assimilation ratio in plants grown in elevated CO2. The response of Deschampsia antarctica to the experimental treatments was quite distinct. Photosynthesis was not affected by either treatment; however, respiration acclimated to temperature in the elevated CO2 treatment. The observed short-term changes in thermal sensitivity indicate type I acclimation of respiration. Growth in elevated CO2 and nocturnal warming resulted in a reduction in mitochondrial numbers and an increase in mitochondrial size in D. antarctica. Overall, our results suggest that with climate change D. antarctica could be more successful than C. quitensis, due to its ability to make metabolic adjustments to maintain its carbon balance.

2.
Physiol Plant ; 169(4): 600-611, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32108952

RESUMEN

Phytopathogen infection alters primary metabolism status and plant development. The alternative oxidase (AOX) has been hypothesized to increase under pathogen attack preventing reductions, thus optimizing photosynthesis and growth. In this study, two genotypes of Medicago truncatula, one relatively resistant (Jemalong A17) and one susceptible (TN1.11), were infected with Fusarium oxysporum and Rhizoctonia solani. The in vivo foliar respiratory activities of the cytochrome oxidase pathway (COP) and the alternative oxidase pathway (AOP) were measured using the oxygen isotope fractionation. Gas exchange and photosynthesis-related parameters were measured and calculated together with antioxidant enzymes activities and organic acids contents. Our results show that the in vivo activity of AOX (valt ) plays a role under fungal infection. When infected with R. solani, the increase of valt in A17 was concomitant to an increase in net assimilation, in mesophyll conductance, to an improvement in the maximum velocity of Rubisco carboxylation and to unchanged malate content. However, under F. oxysporum infection, the induced valt was accompanied by an enhancement in the antioxidant enzymes, superoxide dismutase (SOD; EC1.15.1.1), catalase (CAT; EC1.11.1.6) and guaiacol peroxidase (GPX; EC1.11.1.7), activities and to an unchanged tricarboxylic acid cycle intermediates. These results provide new insight into the role of the in vivo activity of AOX in coordinating primary metabolism interactions that, partly, modulate the relative resistance of M. truncatula to diseases caused by soil-borne pathogenic fungi.


Asunto(s)
Fusarium , Medicago truncatula/genética , Proteínas Mitocondriales , Oxidorreductasas , Fotosíntesis , Proteínas de Plantas , Rhizoctonia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA