RESUMEN
Capsaicin, a pungent compound in chili peppers, is described as having potent anti-inflammatory, antioxidant, and antimicrobial properties. It is also described as a potential modulator of the immune system and intestinal microbiota. Oral or rectal administration of capsaicin has been studied to treat or prevent colitis. However, those vias are often not well accepted due to the burning sensation that capsaicin can cause. Our objective was to evaluate whether the application of capsaicin skin creams (0.075%) would be effective in improving inflammation and epithelial barrier function as well as the composition of the gut microbiota in a model of mild colitis induced by dextran sulfate sodium (1.5%). The results showed that the cutaneous application of capsaicin reversed weight loss and decreased colon shortening and diarrhea, all typical signs of colitis. There was also an improvement in the intestinal epithelial barrier, preserving proteins from tight junctions. We also evaluated the biodistribution of 99mtechnetium-radiolabeled capsaicin (99mTc-CAPS) applied to the back skin of the animals. We found significant concentrations of 99 mTc-Cap in the colon and small intestine after 2 and 4 h of administration. In addition, there was an increased expression of capsaicin receptor TRPV1 in the colon. Moreover, animals with colitis receiving cutaneous capsaicin presented a better short-chain fatty acid profile and increased levels of SIgA, suggesting increased microbiota diversity. In conclusion, our work opens avenues for further studies to better understand capsaicin's potential benefits and mechanisms in addressing colitis through cutaneous application.
RESUMEN
Lactobacillus delbrueckii CIDCA 133 is a promising health-promoting bacterium shown to alleviate intestinal inflammation. However, the specific bacterial components responsible for these effects remain largely unknown. Here, we demonstrated that consuming extractable proteins from the CIDCA 133 strain effectively relieved acute ulcerative colitis in mice. This postbiotic protein fraction reduced the disease activity index and prevented colon shortening in mice. Furthermore, histological analysis revealed colitis prevention with reduced inflammatory cell infiltration into the colon mucosa. Postbiotic consumption also induced an immunomodulatory profile in colitic mice, as evidenced by both mRNA transcript levels (Tlr2, Nfkb1, Nlpr3, Tnf, and Il6) and cytokines concentration (IL1ß, TGFß, and IL10). Additionally, it enhanced the levels of secretory IgA, upregulated the transcript levels of tight junction proteins (Hp and F11r), and improved paracellular intestinal permeability. More interestingly, the consumption of postbiotic proteins modulated the gut microbiota (Bacteroides, Arkkemansia, Dorea, and Oscillospira). Pearson correlation analysis indicated that IL10 and IL1ß levels were positively associated with Bacteroides and Arkkemansia_Lactobacillus abundance. Our study reveals that CIDCA 133-derived proteins possess anti-inflammatory properties in colonic inflammation.
Asunto(s)
Antiinflamatorios , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Ratones , Antiinflamatorios/farmacología , Antiinflamatorios/química , Microbioma Gastrointestinal/efectos de los fármacos , Citocinas/metabolismo , Proteínas Bacterianas/farmacología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología , Probióticos/farmacología , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Colitis Ulcerosa/microbiología , Colitis Ulcerosa/patología , Colon/patología , Colon/microbiología , Colon/metabolismo , MasculinoRESUMEN
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1ß, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
RESUMEN
Lactobacillus delbrueckii subsp. lactis CIDCA 133 is a health-promoting bacterium that can alleviate gut inflammation and improve the epithelial barrier in a mouse model of mucositis. Despite these beneficial effects, the protective potential of this strain in other inflammation models, such as inflammatory bowel disease, remains unexplored. Herein, we examined for the first time the efficacy of Lactobacillus delbrueckii CIDCA 133 incorporated into a fermented milk formulation in the recovery of inflammation, epithelial damage, and restoration of gut microbiota in mice with dextran sulfate sodium-induced colitis. Oral administration of Lactobacillus delbrueckii CIDCA 133 fermented milk relieved colitis by decreasing levels of inflammatory factors (myeloperoxidase, N-acetyl-ß-D-glucosaminidase, toll-like receptor 2, nuclear factor-κB, interleukins 10 and 6, and tumor necrosis factor), secretory immunoglobulin A levels, and intestinal paracellular permeability. This immunobiotic also modulated the expression of tight junction proteins (zonulin and occludin) and the activation of short-chain fatty acids-related receptors (G-protein coupled receptors 43 and 109A). Colonic protection was effectively associated with acetate production and restoration of gut microbiota composition. Treatment with Lactobacillus delbrueckii CIDCA 133 fermented milk increased the abundance of Firmicutes members (Lactobacillus genus) while decreasing the abundance of Proteobacteria (Helicobacter genus) and Bacteroidetes members (Bacteroides genus). These promising outcomes influenced the mice's mucosal healing, colon length, body weight, and disease activity index, demonstrating that this immunobiotic could be explored as an alternative approach for managing inflammatory bowel disease.
Asunto(s)
Colitis , Productos Lácteos Cultivados , Sulfato de Dextran , Microbioma Gastrointestinal , Lactobacillus delbrueckii , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Colitis/microbiología , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/tratamiento farmacológico , Lactobacillus delbrueckii/metabolismo , Productos Lácteos Cultivados/microbiología , Ratones , Probióticos/uso terapéutico , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Mucosa Intestinal/microbiología , Mucosa Intestinal/metabolismo , Inflamación , Colon/microbiología , Colon/metabolismo , LactobacillusRESUMEN
The urgent global health challenge posed by methicillin-resistant Staphylococcus aureus (MRSA) infections demands effective solutions. Antimicrobial peptides (AMPs) represent promising tools of research of new antibacterial agents and LyeTx I mn∆K, a short synthetic peptide based on the Lycosa erythrognatha spider venom, is a good representative. This study focused on analyzing the antimicrobial activities of LyeTx I mn∆K, including minimum inhibitory and bactericidal concentrations, synergy and resensitization assays, lysis activity, the effect on biofilm, and the bacterial death curve in MRSA. Additionally, its characterization was conducted through isothermal titration calorimetry, dynamic light scattering, calcein release, and finally, efficacy in a mice wound model. The peptide demonstrates remarkable efficacy against planktonic cells (MIC 8-16 µM) and biofilms (>30% of inhibition) of MRSA, and outperforms vancomycin in terms of rapid bactericidal action and anti-biofilm effects. The mechanism involves significant membrane damage. Interactions with bacterial model membranes, including those with lysylphosphatidylglycerol (LysylPOPG) modifications, highlight the versatility and selectivity of this compound. Also, the peptide has the ability to sensitize resistant bacteria to conventional antibiotics, showing potential for combinatory therapy. Furthermore, using an in vivo model, this study showed that a formulated gel containing the peptide proved superior to vancomycin in treating MRSA-induced wounds in mice. Together, the results highlight LyeTx I mnΔK as a promising prototype for the development of effective therapeutic strategies against superficial MRSA infections.
RESUMEN
INTRODUCTION: Active targeting of tumors by nanomaterials favors early diagnosis and the reduction of harsh side effects of chemotherapeuticals. METHOD: We synthesized magnetic nanoparticles (64 nm; -40 mV) suspended in a magnetic fluid (MF) and decorated them with anti-carcinoembryonic antigen (MFCEA; 144 nm; -39 mV). MF and MFCEA nanoparticles were successfully radiolabeled with technetium-99m (99mTc) and intravenously injected in CEA-positive 4T1 tumor-bearing mice to perform biodistribution studies. Both 99mTc-MF and 99mTc-MFCEA had marked uptake by the liver and spleen, and the renal uptake of 99mTc-MFCEA was higher than that observed for 99mTc-MF at 20h. At 1 and 5 hours, the urinary excretion was higher for 99mTc-MF than for 99mTc-MFCEA. RESULTS: These data suggest that anti-CEA decoration might be responsible for a delay in renal clearance. Regarding the tumor, 99mTc-MFCEA showed tumor uptake nearly two times higher than that observed for 99mTc-MFCEA. Similarly, the target-nontarget ratio was higher with 99mTc-MFCEA when compared to the group that received the 99mTc-MF. CONCLUSION: These data validated the ability of active tumor targeting by the as-developed antiCEA loaded nanoparticles and are very promising results for the future development of a nanodevice for the management of breast cancer and other types of CEA-positive tumors.
RESUMEN
Intestinal mucositis is a commonly reported side effect in oncology patients undergoing chemotherapy and radiotherapy. Probiotics, prebiotics, and synbiotics have been investigated as alternative therapeutic approaches against intestinal mucositis due to their well-known anti-inflammatory properties and health benefits to the host. Previous studies showed that the potential probiotic Lactobacillus delbrueckii CIDCA 133 and the prebiotic Fructooligosaccharides (FOS) alleviated the 5-Fluorouracil (5-FU) chemotherapy-induced intestinal mucosa damage. Based on these previous beneficial effects, this work evaluated the anti-inflammatory property of the synbiotic formulation containing L. delbrueckii CIDCA 133 and FOS in mice intestinal mucosa inflammation induced by 5-FU. This work showed that the synbiotic formulation was able to modulate inflammatory parameters, including reduction of cellular inflammatory infiltration, gene expression downregulation of Tlr2, Nfkb1, and Tnf, and upregulation of the immunoregulatory Il10 cytokine, thus protecting the intestinal mucosa from epithelial damage caused by the 5-FU. The synbiotic also improved the epithelial barrier function by upregulating mRNA transcript levels of the short chain fatty acid (SCFA)-associated GPR43 receptor and the occludin tight junction protein, with the subsequent reduction of paracellular intestinal permeability. The data obtained showed that this synbiotic formulation could be a promising adjuvant treatment to be explored against inflammatory damage caused by 5-FU chemotherapy.
Asunto(s)
Antineoplásicos , Lactobacillus delbrueckii , Mucositis , Probióticos , Simbióticos , Ratones , Animales , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Mucositis/prevención & control , Probióticos/farmacología , Mucosa Intestinal , Prebióticos/efectos adversos , Fluorouracilo/efectos adversos , Antineoplásicos/farmacologíaRESUMEN
OBJECTIVES: One of the leading causes of obesity is the consumption of excess nutrients. Obesity is characterized by adipose tissue expansion, chronic low-grade inflammation, and metabolic alterations. Although consumption of a high-fat diet has been demonstrated to be a diet-induced obesity model associated with gut disorders, the same effect is not well explored in a mild-obesity model induced by high-refined carbohydrate (HC) diet intake. The intestinal tract barrier comprises mucus, epithelial cells, tight junctions, immune cells, and gut microbiota. This system is susceptible to dysfunction by excess dietary components that could increase intestinal permeability and bacterial translocation. The aim of this study was to evaluate whether an HC diet and the alterations resulting from its intake are linked to small intestine changes. METHODS: Male BALB/c mice were fed a chow or an HC diet for 8 wk. RESULTS: Although differences in body weight gain were not observed between the groups, mice fed the HC diet showed increased adiposity associated with metabolic alterations. The interferon-γ expression and myeloperoxidase levels were increased in the small intestine in mice fed an HC diet. However, the intestinal villi length, the expression of tight junctions (zonula occludens-1 and claudin-4) and tumor necrosis factor-α cytokine, and the percentage of intraepithelial lymphocytes did not differ in the jejunum or ileum between the groups. We did not observe differences in intestinal permeability and bacterial translocation. CONCLUSION: Metabolic alterations caused by consumption of an HC diet lead to a mild obesity state that does not necessarily involve significant changes in intestinal integrity.
Asunto(s)
Mucosa Intestinal , Obesidad , Masculino , Ratones , Animales , Obesidad/metabolismo , Mucosa Intestinal/metabolismo , Dieta Alta en Grasa/efectos adversos , Inflamación/etiología , Carbohidratos de la Dieta/efectos adversos , Carbohidratos de la Dieta/metabolismo , Ratones Endogámicos C57BLRESUMEN
Mucositis is defined as inflammatory and ulcerative lesions along of the gastrointestinal tract that leads to the imbalance of the intestinal microbiota. The use of compounds with action on the integrity of the intestinal epithelium and their microbiota may be a beneficial alternative for the prevention and/or treatment of mucositis. So, the aim of this study was to evaluate the effectiveness of the association of fructo-oligosaccharides (FOS) and arginine on intestinal damage in experimental mucositis. BALB/c mice were randomized into five groups: CTL (without mucositis + saline), MUC (mucositis + saline), MUC + FOS (mucositis + supplementation with FOS-1st until 10th day), MUC + ARG (mucositis + supplementation with arginine-1st until 10th day), and MUC + FOS + ARG (mucositis + supplementation with FOS and arginine-1st until 10th day). On the 7th day, mucositis was induced with an intraperitoneal injection of 300 mg/kg 5-fluorouracil (5-FU), and after 72 h, the animals were euthanized. The results showed that association of FOS and arginine reduced weight loss and oxidative stress (P < 0.05) and maintained intestinal permeability and histological score at physiological levels. The supplementation with FOS and arginine also increased the number of goblet cells, collagen area, and GPR41 and GPR43 gene expression (P < 0.05). Besides these, the association of FOS and arginine modulated intestinal microbiota, leading to an increase in the abundance of the genera Bacteroides, Anaerostipes, and Lactobacillus (P < 0.05) in relation to increased concentration of propionate and acetate. In conclusion, the present results show that the association of FOS and arginine could be important adjuvants in the prevention of intestinal mucositis probably due to modulated intestinal microbiota.
Asunto(s)
Microbioma Gastrointestinal , Mucositis , Ratones , Animales , Mucositis/tratamiento farmacológico , Mucositis/metabolismo , Mucositis/patología , Arginina/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Fluorouracilo , Oligosacáridos/farmacologíaRESUMEN
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Asunto(s)
Colitis Ulcerosa , Colitis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológicoRESUMEN
The increase in the incidence of fungal infections associated with the limited therapeutic arsenal available and the increasing rate of resistance of pathogenic fungi reinforce the need for research of new antifungal agents. Thus, this study aims to evaluate the antifungal activity of the peptide LyeTx I mnΔK, a shortened analogue of the natural peptide LyeTx I derived from spider venom, against Candida species. LyeTx I mnΔK showed potent activity against Candida spp. with minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) between 4 and 32 µM. The peptide also completely inhibited the yeast-to-hypha transition (at 2 µM) and broke mature biofilms (67% reduction at 32 µM) of C. albicans. In addition, LyeTx I mnΔK did not induce resistance in C. albicans during 21 days of exposure. Therefore, the LyeTx I mnΔK is a promising prototype for the development of new antifungal agents.
Asunto(s)
Antifúngicos , Ponzoñas , Antifúngicos/farmacología , Candida , Candida albicans , Péptidos/farmacología , Pruebas de Sensibilidad Microbiana , BiopelículasRESUMEN
Intestinal mucositis promoted by the use of anticancer drugs is characterized by ulcerative inflammation of the intestinal mucosa, a debilitating side effect in cancer patients undergoing treatment. Probiotics are a potential therapeutic option to alleviate intestinal mucositis due to their effects on epithelial barrier integrity and anti-inflammatory modulation. This study investigated the health-promoting impact of Lactobacillus delbrueckii CIDCA 133 in modulating inflammatory and epithelial barrier markers to protect the intestinal mucosa from 5-fluorouracil-induced epithelial damage. L. delbrueckii CIDCA 133 consumption ameliorated small intestine shortening, inflammatory cell infiltration, intestinal permeability, villus atrophy, and goblet cell count, improving the intestinal mucosa architecture and its function in treated mice. Upregulation of Muc2, Cldn1, Hp, F11r, and Il10, and downregulation of markers involved in NF-κB signaling pathway activation (Tlr2, Tlr4, Nfkb1, Il6, and Il1b) were observed at the mRNA level. This work suggests a beneficial role of L. delbrueckii strain CIDCA 133 on intestinal damage induced by 5-FU chemotherapy through modulation of inflammatory pathways and improvement of epithelial barrier function.
RESUMEN
Introduction: Cocaine use disorder is a significant public health issue without a current specific approved treatment. Among different approaches to this disorder, it is possible to highlight a promising immunologic strategy in which an immunogenic agent may reduce the reinforcing effects of the drug if they are able to yield sufficient specific antibodies capable to bind cocaine and/or its psychoactive metabolites before entering into the brain. Several carriers have been investigated in the anti-cocaine vaccine development; however, they generally present a very complex chemical structure, which potentially hampers the proper assessment of the coupling efficiency between the hapten units and the protein structure. Objectives: The present study reports the design, synthesis and preclinical evaluation of two novel calix[n]arene-based anti-cocaine immunogens (herein named as V4N2 and V8N2) by the tethering of the hydrolysis-tolerant hapten GNE (15) on calix[4]arene and calix[8]arene moieties. Methods: The preclinical assessment corresponded to the immunogenicity and dose-response evaluation of V4N2 and V8N2. The potential of the produced antibodies to reduce the passage of cocaine analogue through the blood-brain-barrier (BBB), modifying its biodistribution was also investigated. Results: Both calix[n]arene-based immunogens elicited high titers of cocaine antibodies that modified the biodistribution of a cocaine radiolabeled analogue (99mTc-TRODAT-1) and decreased cocaine-induced behavior, according to an animal model. Conclusion: The present results demonstrate the potential of V4N2 and V8N2 as immunogens for the treatment of cocaine use disorder.
Asunto(s)
Calixarenos , Cocaína , Vacunas , Animales , Calixarenos/química , Calixarenos/farmacología , Haptenos , Distribución TisularRESUMEN
Here, we demonstrated the in vitro and in vivo antibacterial and anti-biofilm activities of melittin, a peptide derived from honeybee venom, against uropathogenic Escherichia coli (UPEC) resistant to quinolones. The minimum inhibitory concentration (MIC) of melittin varied from 0.5 to 8 µM. The bactericidal effect was considered rapid and potent (ranging from 3.0 to 6.0 h after incubation) against a quinolone-resistant and Extended Spectrum Beta-lactamase (ESBL)-producing UPEC strain. Prior exposure to melittin did not reduce the MIC of the quinolones tested, but it decreased the MIC of ceftizoxime by 8-fold due to its ability to form pores in the membrane. Furthermore, melittin disrupted mature biofilms (39.58% at 32 µM) and inhibited the adhesion of this uropathogen to the surfaces of urethral catheter. These results show that melittin is a promising molecule that can be incorporated into invasive urethral medical devices to prevent urinary infections caused by multidrug-resistant UPECs.
Asunto(s)
Venenos de Abeja , Quinolonas , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Meliteno/farmacología , Quinolonas/farmacología , Venenos de Abeja/farmacología , Adhesivos , Biopelículas , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Urinarias/tratamiento farmacológico , Infecciones Urinarias/microbiologíaRESUMEN
The emergence of antibiotic-resistant bacteria, especially carbapenem-resistant Acinetobacter baumannii (CRAB), together with relative stagnation in the development of effective antibiotics, has led to enormous health and economic problems. In this study, we aimed to describe the antibacterial spectrum of LyeTx I mnΔK, a short synthetic peptide based on LyeTx I from Lycosa erythrognatha venom, against CRAB. LyeTx I mnΔK showed considerable antibacterial activity against extensively resistant A. baumannii, with minimum inhibitory and bactericidal concentrations ranging from 1 to 16 µM and 2 to 32 µM, respectively. This peptide significantly increased the release of 260 nm-absorbing intracellular material from CRAB, suggesting bacteriolysis. LyeTx I mnΔK was shown to act synergistically with meropenem and colistin against CRAB. The cytotoxic concentration of LyeTx I mnΔK against Vero cells (CC50 = 55.31 ± 5.00 µM) and its hemolytic activity (HC50 = 77.07 ± 4.00 µM) were considerably low; however, its antibacterial activity was significantly reduced in the presence of human and animal serum and trypsin. Nevertheless, the inhalation of this peptide was effective in reducing pulmonary bacterial load in a mouse model of CRAB infection. Altogether, these results demonstrate that the peptide LyeTx I mnΔK is a potential prototype for the development of new effective and safe antibacterial agents against CRAB.
Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Péptidos/farmacología , Neumonía Bacteriana/tratamiento farmacológico , Venenos de Araña/química , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/aislamiento & purificación , Animales , Antibacterianos/farmacocinética , Antibacterianos/toxicidad , Biopelículas/efectos de los fármacos , Carbapenémicos/farmacología , Chlorocebus aethiops , Farmacorresistencia Bacteriana/efectos de los fármacos , Estabilidad de Medicamentos , Sinergismo Farmacológico , Femenino , Humanos , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Péptidos/química , Neumonía Bacteriana/microbiología , Células VeroRESUMEN
Mayaro fever is an infection caused by Mayaro virus (MAYV) that stands out among the neglected diseases transmitted by arthropods. Brazil is the country with the highest number of confirmed cases of MAYV infection. However, epidemiological surveillance studies conducted in Brazil are decentralized and focus on small outbreaks and unconfirmed cases. Thus, the aim of this review was to determine the general epidemiological profile of MAYV infections in Brazil. Several medical databases (i.e., PUBMED/MEDLINE, Scopus, Cochrane Library, LILACS, SciELO, and Biblioteca Virtual em Saúde) were searched for studies reporting cases of MAYV infections in Brazilian patients. Then, the rate of exposure to MAYV in Brazil was analyzed using RStudio® Software. We identified 37 studies published from 1957 to 2019, containing data of 12,374 patients from 1955 to 2018. The general rate of exposure to MAYV in Brazil was 10% (95% CI; 0.04-0.22), with 1,304 reported cases. The highest incidence of MAYV infection was found in the northern region (13%; 95% CI; 0.05-0.29), with 1,142 cases (88% of all cases). Furthermore, autochthonous MAYV cases have also been reported in the Central West (8%; 95% CI; 0.03-0.18) and Southeast (0.4%; 95% CI; 0.00-0.28). The states with the highest number of cases are Amazonas (490 cases), Pará (276 cases), and Goiás (87 cases). In conclusion, the general rate of exposure to MAYV in Brazil between 1955 and 2018 was considerable, especially in the Legal Amazon, in which 93% of cases were reported.
Asunto(s)
Infecciones por Alphavirus/epidemiología , Infecciones por Alphavirus/virología , Alphavirus/patogenicidad , Animales , Brasil/epidemiología , Brotes de Enfermedades , HumanosRESUMEN
BACKGROUND: The differential diagnosis of inflammatory bowel diseases (IBDs) between Crohn's disease (CD) and ulcerative colitis (UC) is important for designing an effective therapeutic regimen. However, without any adequate gold standard method for differential diagnosis currently, therapeutic design remains a major challenge in clinical practice. In this context, recent studies have showed that circulating leptin stands out as a potential biomarker for the categorization of IBDs. Thus, we aimed to summarize the current understanding of the prognostic and diagnostic value of serum leptin in patients with IBDs. METHODS: A systematic search was performed in PubMed/MEDLINE, Scopus, Cochrane Library, and Web of Science databases. Articles that aimed to study the relationship between circulating levels of leptin and IBDs were included. Finally, the meta-analysis was performed with the mean serum leptin levels in patients with IBDs and healthy controls using RevMan 5.3 software, with I2 > 50% as a criterion for substantial heterogeneity. RESULTS: Nineteen studies were included. Serum leptin levels among patients with IBDs and healthy controls did not show a significant difference (95% CI, -2.15 to 0.57; I2, 86%, P ≤ 0.00001). Similarly, there was no association of leptin levels with the activity of IBDs (95% CI, -0.24 to 0.06; I2, 50%; P = 0.13). However, serum leptin levels were significantly higher in patients with CD than those in patients with UC (95% CI, -2.09 to -0.37; I2, 7%; P ≤ 0.36). CONCLUSION: This review suggested that serum leptin levels might be a promising biomarker to help in the differentiation between CD and UC.
Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Leptina/sangre , Biomarcadores/sangre , Colitis Ulcerosa/diagnóstico , Enfermedad de Crohn/diagnóstico , HumanosRESUMEN
Skin infections caused by methicillin-resistant Staphylococcus aureus (MRSA) require the development of new and effective topical antibiotics. In this context, melittin, the main component of apitoxin, has a potent antibacterial effect. However, little is known regarding the anti-inflammatory potential this peptide in infection models, or its ability to induce clinically important resistance. Here, we aimed to conduct an in-depth characterization of the antibacterial potential of melittin in vitro and evaluate the pharmaceutical potential of an ointment containing melittin for the treatment of non-surgical infections induced by MRSA. The minimum inhibitory concentration of melittin varied from 0.12 to 4 µM. The antibacterial effect was mainly bactericidal and fast (approximately 0.5 h after incubation) and was maintained even in stationary cells and mature MRSA biofilms. Melittin interacts synergistically with beta-lactams and aminoglycosides, and its ability to form pores in the membrane reverses the resistance of vancomycin-intermediate Staphylococcus aureus (VISA) to amoxicillin, and vancomycin. Its ability to induce resistance in vitro was absent, and melittin was stable in several conditions often associated with infected wounds. In vivo, aointment containing melittin reduced bacterial load and the content of pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin-6 (IL-6), and IL-1 beta. Collectively, these data point to melittin as a potential candidate for topical formulations aimed at the treatment of non-surgical infections caused by MRSA.
Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Humanos , Meliteno/farmacología , Pruebas de Sensibilidad Microbiana , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureusRESUMEN
In the continuing search for novel antibiotics, antimicrobial peptides are promising molecules, due to different mechanisms of action compared to classic antibiotics and to their selectivity for interaction with microorganism cells rather than with mammalian cells. Previously, our research group has isolated the antimicrobial peptide LyeTx I from the venom of the spider Lycosa erythrognatha. Here, we proposed to synthesize three novel shortened derivatives from LyeTx I (LyeTx I mn; LyeTx I mnΔK; LyeTx I mnΔKAc) and to evaluate their toxicity and biological activity as potential antimicrobial agents. Peptides were synthetized by Fmoc strategy and circular dichroism analysis was performed, showing that the three novel shortened derivatives may present membranolytic activity, like the original LyeTx I, once they folded as an alpha helix in 2.2.2-trifluorethanol and sodium dodecyl sulfate. In vitro assays revealed that the shortened derivative LyeTx I mnΔK presents the best score between antimicrobial (↓ MIC) and hemolytic (↑ EC50) activities among the synthetized shortened derivatives, and LUHMES cell-based NeuriTox test showed that it is less neurotoxic than the original LyeTx I (EC50 [LyeTx I mnΔK] â EC50 [LyeTx I]). In vivo data, obtained in a mouse model of septic arthritis induced by Staphylococcus aureus, showed that LyeTx I mnΔK is able to reduce infection, as demonstrated by bacterial recovery assay (â¼10-fold reduction) and scintigraphic imaging (less technetium-99m labeled-Ceftizoxime uptake by infectious site). Infection reduction led to inflammatory process and pain decreases, as shown by immune cells recruitment reduction and threshold nociception increment, when compared to positive control group. Therefore, among the three shortened peptide derivatives, LyeTx I mnΔK is the best candidate as antimicrobial agent, due to its smaller amino acid sequence and toxicity, and its greater biological activity.
Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/aislamiento & purificación , Bacterias/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Dicroismo Circular , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Hongos/efectos de los fármacos , Humanos , Inflamación/patología , Ratones , Pruebas de Sensibilidad Microbiana , Nocicepción/efectos de los fármacos , ConejosRESUMEN
Invasive candidiasis, such as intra-abdominal candidiasis (IAC), is a significant cause of morbidity and mortality worldwide. IAC is still poorly understood, and its treatment represents a challenge for public health. In this study, we showed the in vitro anti-Candida activity of four alkaloid synthetic derivatives and their antifungal potential in a murine model of IAC. The biological effects of alkaloids were evaluated against Candida spp. through the determination of the minimum inhibitory concentration (MIC). For the alkaloids that showed antifungal activity, the fungicidal concentration, time-kill curve, synergism with azoles and polyenes, phenotypic effects, and the effect against virulence factors were also determined. The most active alkaloids were selected for in vivo assays. The compounds 6a and 6b were active against C. albicans, C. glabrata, and C. tropicalis (MIC 7.8 µg/mL) and showed promising antifungal activity against C. krusei (MIC 3.9 µg/mL). The compound 6a presented a potent fungicidal effect in vitro, eliminating the yeast C. albicans after 8 h of incubation at MIC. An important in vitro synergistic effect with ketoconazole was observed for these two alkaloids. They also induced the lysis of fungal cells by binding to the ergosterol of the membrane. Besides that, 6a and 6b were able to reduce yeast-to-hyphal transition in C. albicans, as well as inhibit the biofilm formation of this pathogen. In the in vivo assay, the compound 6a did not show acute toxicity and was mainly absorbed by the liver, spleen, and lung after a parenteral administration. Also, this analogue significantly reduced the fungal load of C. albicans on the kidney and spleen of animals with IAC. Therefore, these results showed that the compound 6a is a potent anti-Candida agent in vitro and in vivo.