Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Front Chem ; 12: 1379914, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170866

RESUMEN

The rise of antibiotic-resistant bacterial strains has become a critical health concern. According to the World Health Organization, the market introduction of new antibiotics is alarmingly sparse, underscoring the need for novel therapeutic targets. The LytR-CpsA-Psr (LCP) family of proteins, which facilitate the insertion of cell wall glycopolymers (CWGPs) like teichoic acids into peptidoglycan, has emerged as a promising target for antibiotic development. LCP proteins are crucial in bacterial adhesion and biofilm formation, making them attractive for disrupting these processes. This study investigated the structural and functional characteristics of the LCP domain of LytR from Streptococcus dysgalactiae subsp. dysgalactiae. The protein structure was solved by X-ray Crystallography at 2.80 Å resolution. Small-angle X-ray scattering (SAXS) data were collected to examine potential conformational differences between the free and ligand-bound forms of the LytR LCP domain. Additionally, docking and molecular dynamics (MD) simulations were used to predict the interactions and conversion of ATP to ADP and AMP. Experimental validation of these predictions was performed using malachite green activity assays. The determined structure of the LCP domain revealed a fold highly similar to those of homologous proteins while SAXS data indicated potential conformational differences between the ligand-free and ligand-bound forms, suggesting a more compact conformation during catalysis, upon ligand binding. Docking and MD simulations predicted that the LytR LCP domain could interact with ADP and ATP and catalyze their conversion to AMP. These predictions were experimentally validated by malachite green activity assays, confirming the protein's functional versatility. The study provides significant insights into the structural features and functional capabilities of the LCP domain of LytR from S. dysgalactiae subsp. dysgalactiae. These findings pave the way for designing targeted therapies against antibiotic-resistant bacteria and offer strategies to disrupt bacterial biofilm formation.

2.
Front Integr Neurosci ; 18: 1422312, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39051059

RESUMEN

Introduction: Chronic anxiety is a statemarked by sustained activation of the masseter muscle, manifesting in both mental and physical strain. This prolonged tension can significantly impact mental wellbeing and cognitive abilities, posing a risk for a range of health complications. This double-blind, randomized, controlled clinical trial investigated the impact of transcutaneous auricular vagus nerve stimulation (TAVNS) on masseter muscle activity, pressure pain threshold (PPT), and anxiety levels in university students with elevated anxiety. Methods: Forty-two participants meeting inclusion criteria were randomly assigned to either active TAVNS or sham TAVNS groups. Various parameters, including masseter muscle electromyographic (EMG) signals, PPT, and Beck Anxiety Inventory (BAI) scores, were assessed before pretreatment, immediately after the intervention week, and 2 weeks follow-up. Results: Active TAVNS significantly reduced both left and right masseter activation during resting mandibular position, persisting for 2 weeks post-intervention. Additionally, TAVNS induced a lasting decrease in both left and right masseter PPT, indicative of altered pain perception. Notably, BAI scores showed a substantial reduction, emphasizing TAVNS as a potential intervention for anxiety, with effects maintained at the 2-week follow-up. Discussion: This study provides comprehensive insights into the multifaceted effects of TAVNS on physiological and psychological aspects associated with anxiety in university students. The promising results underscore TAVNS as a potential neuromodulatory intervention for anxiety-related conditions, warranting further research and clinical exploration. Clinical Trial Registration: https://ensaiosclinicos.gov.br/rg/RBR-4s4kt2r.

3.
Nat Immunol ; 25(6): 981-993, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38811816

RESUMEN

Viral infection makes us feel sick as the immune system alters systemic metabolism to better fight the pathogen. The extent of these changes is relative to the severity of disease. Whether blood glucose is subject to infection-induced modulation is mostly unknown. Here we show that strong, nonlethal infection restricts systemic glucose availability, which promotes the antiviral type I interferon (IFN-I) response. Following viral infection, we find that IFNγ produced by γδ T cells stimulates pancreatic ß cells to increase glucose-induced insulin release. Subsequently, hyperinsulinemia lessens hepatic glucose output. Glucose restriction enhances IFN-I production by curtailing lactate-mediated inhibition of IRF3 and NF-κB signaling. Induced hyperglycemia constrained IFN-I production and increased mortality upon infection. Our findings identify glucose restriction as a physiological mechanism to bring the body into a heightened state of responsiveness to viral pathogens. This immune-endocrine circuit is disrupted in hyperglycemia, possibly explaining why patients with diabetes are more susceptible to viral infection.


Asunto(s)
Glucemia , Inmunidad Innata , Interferón gamma , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Ratones , Glucemia/metabolismo , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Insulina/metabolismo , Insulina/inmunología , Ratones Noqueados , Hiperglucemia/inmunología , Factor 3 Regulador del Interferón/metabolismo , FN-kappa B/metabolismo , Humanos , Hígado/inmunología , Hígado/virología , Hígado/metabolismo , Masculino
4.
Brain Commun ; 6(2): fcae049, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515439

RESUMEN

Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.

5.
Toxicon ; 240: 107628, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38278421

RESUMEN

Protodioscin is a saponin present in grasses that can lead to losses in animal production. Our hypothesis was that mathematical models can accurately and precisely predict the protodioscin concentration in tropical grasses. We evaluated the ability of four mathematical models to describe the protodioscin concentration in Brachiaria and Panicum cultivars with different regrowth periods. Six cultivars of Panicum: Aruana, Massai, Mombaça, Tanzânia, Tamani, and Zuri; and five of Brachiaria-grass: Marandu, Paiaguás, Piatã, Xaraés and Basilisk. Protodioscin concentration evaluations were carried out at 51, 84, 110, and 111 days of age. Linear, Quadratic, Exponential, and Logarithmic models were evaluated, and the adequacy of the models was verified. The models were compared for accuracy and precision by pairwise mean squared error analysis and the delta Akaike information criterion. The models did not differ from each other in terms of accuracy and precision. The exponential model showed a high ability to explain the observed variability between protodioscin concentration and plant age for Brachiaria grasses. Panicum grasses have constant protodioscin concentration. Mathematical models are capable of predicting the protodioscin concentration in grasses of the genus Brachiaria based on plant age. We recommend Exponential model to predict the concentration of protodioscin in Brachiaria grasses.


Asunto(s)
Brachiaria , Diosgenina , Diosgenina/análogos & derivados , Panicum , Saponinas , Animales , Saponinas/análisis , Diosgenina/análisis
6.
J Clin Invest ; 134(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227368

RESUMEN

Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ácido Tauroquenodesoxicólico , Ratones , Adulto , Animales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Receptores de Glucocorticoides/genética , Ratones Transgénicos
7.
Front Netw Physiol ; 3: 1279646, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116461

RESUMEN

In recent years, brain imaging studies have begun to shed light on the neural correlates of physiologically-reversible altered states of consciousness such as deep sleep, anesthesia, and psychedelic experiences. The emerging consensus is that normal waking consciousness requires the exploration of a dynamical repertoire enabling both global integration i.e., long-distance interactions between brain regions, and segregation, i.e., local processing in functionally specialized clusters. Altered states of consciousness have notably been characterized by a tipping of the integration/segregation balance away from this equilibrium. Historically, functional MRI (fMRI) has been the modality of choice for such investigations. However, fMRI does not enable characterization of the integration/segregation balance at sub-second temporal resolution. Here, we investigated global brain spatiotemporal patterns in electrocorticography (ECoG) data of a monkey (Macaca fuscata) under either ketamine or propofol general anesthesia. We first studied the effects of these anesthetics from the perspective of band-specific synchronization across the entire ECoG array, treating individual channels as oscillators. We further aimed to determine whether synchrony within spatially localized clusters of oscillators was differently affected by the drugs in comparison to synchronization over spatially distributed subsets of ECoG channels, thereby quantifying changes in integration/segregation balance on physiologically-relevant time scales. The findings reflect global brain dynamics characterized by a loss of long-range integration in multiple frequency bands under both ketamine and propofol anesthesia, most pronounced in the beta (13-30 Hz) and low-gamma bands (30-80 Hz), and with strongly preserved local synchrony in all bands.

8.
Animals (Basel) ; 13(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37835638

RESUMEN

An analog of a bovine-appeasing substance (BAS) was previously demonstrated to have calming effects, and it could be an alternative to alleviate the stress caused by weaning. Thus, the objective of this study was to evaluate the effects of BAS administration at weaning on growth, stress, behavior, and response to vaccination of Nellore calves. Eighty-six Nellore calves (40 females and 46 males) were abruptly weaned and randomly assigned into 1 of 2 treatments: (1) saline solution (0.9% NaCl; n = 43) and (2) BAS (Secure Catte, IRSEA Group, Quartier Salignan, France; n = 43). The solutions were topically applied (5 mL/calf) to the nuchal skin area of each animal. On d 0, before treatment application, calves were vaccinated against infectious bovine rhinotracheitis (IBR), parainfluenza-3 (PI3) virus, and bovine viral diarrhea virus types 1 and 2 (BVDV-1 and 2). Calves from each treatment were kept in different pastures for 15 d (time of BAS action) and then moved to a single pasture. Body weight (BW), blood samples, and temperament in the chute (entry score, chute score, and exit score) were collected on d 0, 3, 8, 15, 51, and 100, and behavior on pasture on d 1, 2, 4, 5, 6, 7, and 9. Calves assigned to BAS vs. Saline treatment tended to have greater BW on d 15 (p = 0.10), tended to have lower entry scores on d 8 and 51 (p = 0.10), and chute scores on d 8 (p = 0.07), and had lower exit scores on d 8 (p = 0.02). Calves assigned to BAS vs. Saline treatment also had greater time grazing on d 7 and 9 (p < 0.01), eating concentrate on d 2, 5, and 6 (p = 0.05), walking on d 1, 2, 5, and 9 (p < 0.01), standing and ruminating on d 2, 7 and 9 (p < 0.01), and playing on d 2, 4, 6, 7, and 9 (p < 0.01). Furthermore, they had lower time lying on 1 and 2 (p < 0.01), standing on d 5 and 9 (p < 0.01), and vocalizing on d 1 and 2 (p < 0.01). Calves assigned to BAS vs. Saline treatment had greater serum titter concentrations of PI3 t on d 15 and 51 (p = 0.05) and BVDV-1 on d 51 (p = 0.02). However, they had lower serum concentrations of cortisol on d 3 (p = 0.03). BAS administration did not affect (p ≥ 0.12) the serum titer concentration of IBR and BVDV-2 titers or the plasma concentration of haptoglobin and ceruloplasmin. The BAS administration improved BW, reduced temperament and serum cortisol concentration, and improved behavior and response to vaccination.

9.
Netw Neurosci ; 7(2): 478-495, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397890

RESUMEN

Beyond the established effects of subthalamic nucleus deep brain stimulation (STN-DBS) in reducing motor symptoms in Parkinson's disease, recent evidence has highlighted the effect on non-motor symptoms. However, the impact of STN-DBS on disseminated networks remains unclear. This study aimed to perform a quantitative evaluation of network-specific modulation induced by STN-DBS using Leading Eigenvector Dynamics Analysis (LEiDA). We calculated the occupancy of resting-state networks (RSNs) in functional MRI data from 10 patients with Parkinson's disease implanted with STN-DBS and statistically compared between ON and OFF conditions. STN-DBS was found to specifically modulate the occupancy of networks overlapping with limbic RSNs. STN-DBS significantly increased the occupancy of an orbitofrontal limbic subsystem with respect to both DBS OFF (p = 0.0057) and 49 age-matched healthy controls (p = 0.0033). Occupancy of a diffuse limbic RSN was increased with STN-DBS OFF when compared with healthy controls (p = 0.021), but not when STN-DBS was ON, which indicates rebalancing of this network. These results highlight the modulatory effect of STN-DBS on components of the limbic system, particularly within the orbitofrontal cortex, a structure associated with reward processing. These results reinforce the value of quantitative biomarkers of RSN activity in evaluating the disseminated impact of brain stimulation techniques and the personalization of therapeutic strategies.

10.
Neurobiol Learn Mem ; 202: 107763, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37169214

RESUMEN

Fear memory expression can be attenuated by updating the footshock perception during the plastic state induced by retrieval, from a strong unconditioned stimulus to a very weak one through deconditioning. In this process, the original fear association of the conditioned stimulus with the footshock is substituted by an innocuous stimulus and the animals no longer express a fear response. In the present study, we explore the boundaries of this deconditioning-update strategy by the characterization of this phenomenon. We found that there is an optimal mismatch between the footshock intensity delivered in the training and in the reactivation. Likewise, we characterized the temporal window that the protocol is efficient in hindering fear response. Our findings contribute to a better understanding of the limits in which deconditioning acts in attenuating fear memory, so that an optimized protocol using this strategy can be planned in order to deal with emotional disorders.


Asunto(s)
Condicionamiento Clásico , Miedo , Animales , Miedo/fisiología , Condicionamiento Clásico/fisiología , Condicionamiento Operante
11.
ASAIO J ; 69(5): e181-e187, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37126226

RESUMEN

Few data from Latin American centers on clinical outcomes in coronavirus disease 2019 (COVID-19) patients with acute respiratory distress syndrome who required extracorporeal membrane oxygenation (ECMO) are published. Moreover, clinical and functional status after hospital discharge remains poorly explored in these patients. We evaluated in-hospital outcomes of severe COVID-19 patients who received ECMO support in two Brazilian hospitals. In one-third of the survivors, post-acute COVID-19 syndrome (PACS), quality of life, anxiety, depression, and return to work were evaluated. Eighty-five patients were included and in-hospital mortality was 47%. Age >65 years (HR: 4.8; 95% confidence interval [CI]: 1.4-16.4), diabetes (HR: 6.0; 95% CI: 1.8-19.6), ECMO support duration (HR: 1.08; 95% CI: 1.05-1.12) and dialysis initiated after ECMO (HR: 3.4; 95% CI: 1.1-10.8) were independently associated with higher in-hospital mortality and mechanical ventilation (MV) duration before ECMO was not (HR: 1.18; 95% CI: 0.71-2.09). PACS-related symptoms were reported by two-thirds and half of patients at 30- and 90-days post-discharge, respectively. The median EQ-5D score was 0.85 (0.70-1.00) and 0.77 (0.66-1.00) at 30 and 90 days. Of the 15 responders, all previously working patients, except one, have returned to work at 90 days. In conclusion, in-hospital mortality in a large Latin American cohort was comparable to the Global extracorporeal life support organization registry.


Asunto(s)
COVID-19 , Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Insuficiencia Respiratoria , Humanos , Anciano , Oxigenación por Membrana Extracorpórea/efectos adversos , Calidad de Vida , Alta del Paciente , Cuidados Posteriores , Síndrome de Dificultad Respiratoria/etiología , Hospitales
12.
Circ Res ; 132(11): 1546-1565, 2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37228235

RESUMEN

The cardiovascular system is hardwired to the brain via multilayered afferent and efferent polysynaptic axonal connections. Two major anatomically and functionally distinct though closely interacting subcircuits within the cardiovascular system have recently been defined: The artery-brain circuit and the heart-brain circuit. However, how the nervous system impacts cardiovascular disease progression remains poorly understood. Here, we review recent findings on the anatomy, structures, and inner workings of the lesser-known artery-brain circuit and the better-established heart-brain circuit. We explore the evidence that signals from arteries or the heart form a systemic and finely tuned cardiovascular brain circuit: afferent inputs originating in the arterial tree or the heart are conveyed to distinct sensory neurons in the brain. There, primary integration centers act as hubs that receive and integrate artery-brain circuit-derived and heart-brain circuit-derived signals and process them together with axonal connections and humoral cues from distant brain regions. To conclude the cardiovascular brain circuit, integration centers transmit the constantly modified signals to efferent neurons which transfer them back to the cardiovascular system. Importantly, primary integration centers are wired to and receive information from secondary brain centers that control a wide variety of brain traits encoded in engrams including immune memory, stress-regulating hormone release, pain, reward, emotions, and even motivated types of behavior. Finally, we explore the important possibility that brain effector neurons in the cardiovascular brain circuit network connect efferent signals to other peripheral organs including the immune system, the gut, the liver, and adipose tissue. The enormous recent progress vis-à-vis the cardiovascular brain circuit allows us to propose a novel neurobiology-centered cardiovascular disease hypothesis that we term the neuroimmune cardiovascular circuit hypothesis.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Corazón , Neuronas/fisiología , Encéfalo
13.
Immunity ; 56(4): 695-703, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37044060

RESUMEN

Type 2 immune responses drive a broad range of biological processes including defense from large parasites, immunity to allergens, and non-immunity-related functions, such as metabolism and tissue homeostasis. The symptoms provoked by type 2 immunity, such as vomiting, coughing or itching, encompass nervous system triggering. Here, we review recent findings that place type 2 neuroimmune circuits at the center stage of immunity at barrier surfaces. We emphasize the homeostatic functions of these circuitries and how deregulation may drive pathology and impact disease outcomes, including in the context of cancer. We discuss a paradigm wherein type 2 neuroimmune circuits are central regulators of organismal physiology.


Asunto(s)
Sistema Nervioso , Neuroinmunomodulación , Homeostasis , Inmunidad
14.
Acta Paediatr ; 112(1): 85-92, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181725

RESUMEN

AIM: This study used a screen-based perceptual matching task to see how non-parents, people trying to get pregnant, and those who had given birth prioritised shapes and labels relating to self or infant conditions. METHODS: The study took place at Aarhus University Hospital in Denmark from December 2016 to November 2021. Recruitment methods included family planning clinics, social media, online recruitment systems and local bulletin boards. The modified perceptual matching task linked five shapes to five labels, including self and infant. RESULTS: We found that 67 males and females with a mean age of 24.4 ± 3 years, who had no plans to become parents in the near future, reacted faster and more accurately to self-shapes and labels (p < 0.001), which validated the experiment. The 56 participants aged 27.1 ± 4.4 years who were actively trying to become parents showed no statistically significant prioritisation. A subset of 21 participants aged 28.7 ± 4.4 years showed faster response times to infant than self-shapes and labels 1 year after giving birth (p < 0.001). CONCLUSION: Healthy first-time parents showed faster reactions to infant than self-conditions 1 year after giving birth, in contrast to the other two groups.


Asunto(s)
Estado de Salud , Padres , Adulto , Femenino , Humanos , Lactante , Embarazo , Adulto Joven
15.
Comput Struct Biotechnol J ; 21: 335-345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36582443

RESUMEN

Traditionally, in neuroimaging, model-free analyses are used to find significant differences between brain states via signal detection theory. Depending on the a priori assumptions about the underlying data, different spatio-temporal features can be analysed. Alternatively, model-based techniques infer features from the data and compare significance from model parameters. However, to assess transitions from one brain state to another remains a challenge in current paradigms. Here, we introduce a "Dynamic Sensitivity Analysis" framework that quantifies transitions between brain states in terms of stimulation ability to rebalance spatio-temporal brain activity towards a target state such as healthy brain dynamics. In practice, it means building a whole-brain model fitted to the spatio-temporal description of brain dynamics, and applying systematic stimulations in-silico to assess the optimal strategy to drive brain dynamics towards a target state. Further, we show how Dynamic Sensitivity Analysis extends to various brain stimulation paradigms, ultimately contributing to improving the efficacy of personalised clinical interventions.

16.
Rev. Bras. Cancerol. (Online) ; 69(4)out-dez. 2023.
Artículo en Inglés, Portugués | LILACS, Sec. Est. Saúde SP | ID: biblio-1537291

RESUMEN

Os inibidores de checkpoints imunológicos (ICI) são uma classe de medicamentos cada vez mais utilizados para tratar o câncer. No entanto, eles têm sido associados a um risco aumentado de reativação da tuberculose (TB) em pacientes com infecção tuberculosa latente (ILTB). Relato do caso: Mulher, 61 anos, com câncer de orofaringe desenvolveu reativação de TB pulmonar enquanto recebia nivolumabe. Acredita-se que a reativação da TB em pacientes em ICI seja em virtude da inibição da via PD-1 que desempenha um papel no controle da ILTB. A incidência de reativação da TB em pacientes em ICI é maior do que na população geral. Conclusão: O uso crescente de ICI provavelmente levará a um aumento no número de casos de reativação da TB. Sugere-se proceder ao rastreamento rotineiro para ILTB nos pacientes que estão sendo considerados para tratamento com ICI, especialmente em países com alta incidência de TB.


Asunto(s)
Tuberculosis Latente , Inhibidores de Puntos de Control Inmunológico , Tuberculosis Pulmonar
17.
Sci Immunol ; 7(75): eabk2541, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36054336

RESUMEN

Interactions between the mammalian host and commensal microbiota are enforced through a range of immune responses that confer metabolic benefits and promote tissue health and homeostasis. Immunoglobulin A (IgA) responses directly determine the composition of commensal species that colonize the intestinal tract but require substantial metabolic resources to fuel antibody production by tissue-resident plasma cells. Here, we demonstrate that IgA responses are subject to diurnal regulation over the course of a circadian day. Specifically, the magnitude of IgA secretion, as well as the transcriptome of intestinal IgA+ plasma cells, was found to exhibit rhythmicity. Oscillatory IgA responses were found to be entrained by time of feeding and were also found to be in part coordinated by the plasma cell-intrinsic circadian clock via deletion of the master clock gene Arntl. Moreover, reciprocal interactions between the host and microbiota dictated oscillatory dynamics among the commensal microbial community and its associated transcriptional and metabolic activity in an IgA-dependent manner. Together, our findings suggest that circadian networks comprising intestinal IgA, diet, and the microbiota converge to align circadian biology in the intestinal tract and to ensure host-microbial mutualism.


Asunto(s)
Microbiota , Simbiosis , Animales , Inmunoglobulina A Secretora , Intestinos , Mamíferos , Periodicidad
18.
Molecules ; 27(17)2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36080291

RESUMEN

The partitioning of the molecular mechanics (MM) energy in calculations involving biomolecular systems is important to identify the source of major stabilizing interactions, e.g., in ligand-protein interactions, or to identify residues with considerable contributions in hybrid multiscale calculations, i.e., quantum mechanics/molecular mechanics (QM/MM). Here, we describe Energy Split, a software program to calculate MM energy partitioning considering the AMBER Hamiltonian and parameters. Energy Split includes a graphical interface plugin for VMD to facilitate the selection of atoms and molecules belonging to each part of the system. Energy Split is freely available at or can be easily installed through the VMD Store.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Ligandos , Fenómenos Físicos , Programas Informáticos
19.
Antimicrob Agents Chemother ; 66(8): e0008322, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35861550

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication. To identify chemical tools to further study these functional interfaces, 139,146 compounds from different chemical libraries were screened through an S/ACE2 in silico virtual molecular model. The best compounds were selected for further characterization using both cellular and biochemical approaches, reiterating SARS-CoV-2 entry and the S/ACE2 interaction. We report here two selected hits, bis-indolyl pyridine AB-00011778 and triphenylamine AB-00047476. Both of these compounds can block the infectivity of lentiviral vectors pseudotyped with the SARS-CoV-2 S protein as well as wild-type and circulating variant SARS-CoV-2 strains in various human cell lines, including pulmonary cells naturally susceptible to infection. AlphaLISA and biolayer interferometry confirmed a direct inhibitory effect of these drugs on the S/ACE2 association. A specific study of the AB-00011778 inhibitory properties showed that this drug inhibits viral replication with a 50% effective concentration (EC50) between 0.1 and 0.5 µM depending on the cell lines. Molecular docking calculations of the interaction parameters of the molecules within the S/ACE2 complex from both wild-type and circulating variants of the virus showed that the molecules may target multiple sites within the S/ACE2 interface. Our work indicates that AB-00011778 constitutes a good tool for modulating this interface and a strong lead compound for further therapeutic purposes.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2 , Humanos , Simulación del Acoplamiento Molecular , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/farmacología , Unión Proteica , Piridinas/farmacología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
20.
Dev Cell ; 57(13): 1661-1675.e7, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35716661

RESUMEN

Recruitment of stem cells is crucial for tissue repair. Although stem cell niches can provide important signals, little is known about mechanisms that coordinate the engagement of disseminated stem cells across an injured tissue. In Drosophila, adult brain lesions trigger local recruitment of scattered dormant neural stem cells suggesting a mechanism for creating a transient stem cell activation zone. Here, we find that injury triggers a coordinated response in neuro-glial clusters that promotes the spread of a neuron-derived stem cell factor via glial secretion of the lipocalin-like transporter Swim. Strikingly, swim is induced in a Hif1-α-dependent manner in response to brain hypoxia. Mammalian Swim (Lcn7) is also upregulated in glia of the mouse hippocampus upon brain injury. Our results identify a central role of neuro-glial clusters in promoting neural stem cell activation at a distance, suggesting a conserved function of the HIF1-α/Swim/Wnt module in connecting injury-sensing and regenerative outcomes.


Asunto(s)
Drosophila , Células-Madre Neurales , Animales , Mamíferos , Ratones , Neuroglía , Neuronas , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA