Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceutics ; 15(10)2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37896208

RESUMEN

Cancer is one of the most well-studied diseases and there have been significant advancements over the last few decades in understanding its molecular and cellular mechanisms. Although the current treatments (e.g., chemotherapy, radiotherapy, gene therapy and immunotherapy) have provided complete cancer remission for many patients, cancer still remains one of the most common causes of death in the world. The main reasons for the poor response rates for different cancers include the lack of drug specificity, drug resistance and toxic side effects (i.e., in healthy tissues). For addressing the limitations of conventional cancer treatments, nanotechnology has shown to be an important field for constructing different nanoparticles for destroying cancer cells. Due to their size (i.e., less than 1 µm), nanoparticles can deliver significant amounts of cancer drugs to tumors and are able to carry moieties (e.g., folate, peptides) for targeting specific types of cancer cells (i.e., through receptor-mediated endocytosis). Liposomes, composed of phospholipids and an interior aqueous core, can be used as specialized delivery vehicles as they can load different types of cancer therapy agents (e.g., drugs, photosensitizers, genetic material). In addition, the ability to load imaging agents (e.g., fluorophores, radioisotopes, MRI contrast media) enable these nanoparticles to be used for monitoring the progress of treatment. This review examines a wide variety of different liposomes for cancer theranostics, with the different available treatments (e.g., photothermal, photodynamic) and imaging modalities discussed for different cancers.

2.
Technol Cancer Res Treat ; 22: 15330338231191493, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37642945

RESUMEN

Theranostic agents are promising due to their ability to diagnose, treat and monitor different types of cancer using a variety of imaging modalities. The advantage specifically of nanoparticles is that they can accumulate easily at the tumor site due to the large gaps in blood vessels near tumors. Such high concentration of theranostic agents at the target site can lead to enhancement in both imaging and therapy. This article provides an overview of nanoparticles that have been used for cancer theranostics, and the different imaging, treatment options and signaling pathways that are important when using nanoparticles for cancer theranostics. In particular, nanoparticles made of metal elements are emphasized due to their wide applications in cancer theranostics. One important aspect discussed is the ability to combine different types of metals in one nanoplatform for use as multimodal imaging and therapeutic agents for cancer.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Neoplasias , Humanos , Medicina de Precisión , Nanomedicina Teranóstica/métodos , Nanopartículas del Metal/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Imagen Multimodal
3.
J Photochem Photobiol B ; 218: 112110, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33865007

RESUMEN

Over the last decade, there has been significant developments in nanotechnology, in particular for combined imaging and therapeutic applications (theranostics). The core or shell of nanoemulsions (NEs) can be loaded with various therapeutic agents, including drugs with low solubility for effective treatment, or various imaging agents for specific imaging modalities (e.g., MRI, fluorescence). In this work, perfluorohexane (PFH) NEs were synthesized for theranostic applications and were coupled to silica coated gold nanoparticles (scAuNPs) to increase the generation of PFH bubbles upon laser induced vaporization (i.e., optical droplet vaporization). The localized heat generated from the absorption properties of these nanoparticles (used to provide photoacoustic signals) can also be used to treat cancer without significantly damaging nearby healthy tissues. The theranostic potential of these PFH-NEs for contrast imaging of tumors and as a drug-delivery vehicle for therapeutic purposes were demonstrated for both in vitro and in vivo systems using a combination of photoacoustic, ultrasound and fluorescence imaging modalities. The ability of PFH-NEs to couple with scAuNPs, attach to the membranes of cancer cells and internalize within cancer cells, are encouraging for targeted chemotherapeutic applications for directly inducing cancer cell death via vaporization in clinical settings.


Asunto(s)
Antineoplásicos/química , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Oro/química , Indicadores y Reactivos/química , Nanopartículas Multifuncionales/química , Dióxido de Silicio/química , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Portadores de Fármacos/química , Femenino , Fluorocarburos/química , Humanos , Células MCF-7 , Ratones Endogámicos BALB C , Imagen Multimodal , Neoplasias Experimentales , Imagen Óptica , Técnicas Fotoacústicas , Medicina de Precisión , Nanomedicina Teranóstica , Ultrasonografía
4.
RSC Adv ; 11(9): 4906-4920, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35424456

RESUMEN

Nanoparticles have extensively been used for cancer therapy and imaging (i.e., theranostics) using various imaging modalities. Due to their physical and chemical properties (e.g., absorption, fluorescence, and magnetic properties) they have been used for image guided therapy for cancer treatment monitoring. There are various limitations that make many theranostic agents unable to be used for the extended periods of time required for enhancing theranostic capabilities. Some of these are due to inherent characteristics (e.g., change and/or breakdown of structure) present upon continuous irradiation and others are due to environmental (i.e., physiological) conditions that can lead to physical instability (i.e., in terms of size) affecting the amount of particles that can accumulate at the target site and the overall contrast that can be achieved. In this study, perfluorohexane (PFH) nanoemulsions (NEs) were synthesized with silica coated gold nanoparticles (PFH-NEs-scAuNPs) in order to give both stable and enhanced signals for cancer imaging by increasing vaporization of the emulsions into bubbles through the process of optical droplet vaporization (ODV). The resulting perfluorohexane bubbles could be imaged using nonlinear ultrasound (NL US) which significantly increases the signal to noise ratio due to the nonlinear scattering properties of oscillating bubbles. The NL US signals from PFH bubbles were found to be more stable compared to conventional bubbles used for contrast imaging. In addition, the vaporization of PFH NEs into bubbles was shown to cause significant cancer cell death reflecting the theranostic capabilities of the formed PFH bubbles. Since cell death is initiated with laser excitation of PFH-NEs-scAuNPs, these nanoparticles can specifically target cancer cells once they have accumulated at the tumor region. Due to the type of theranostic agent and imaging modality used, the PFH-NEs-scAuNPs can be used to provide higher specificity compared to other agents for locating the tumor region by minimizing tissue specific signals while at the same time being used to treat cancer.

5.
Nanotechnology ; 29(50): 505103, 2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30192236

RESUMEN

Nanoparticles are submicrometer in size and are used in a variety of ways in the biomedical field. They can carry therapeutic drugs, either in the particle core or surface to target cancer sites in the body. Additionally they can contain imaging agents to diagnose and monitor the tumor size using different imaging modalities, such as fluorescence and nuclear magnetic resonance imaging. Novel theranostic nanoparticle agents, called perfluorohexane nanoemulsions (PFH-NEs) were synthesized whose intrinsic properties could be used for both imaging (ultrasound and photoacoustic) and therapy. Compared to other theranostic agents, our PFH-NEs can absorb sufficient near-infrared light to enhance contrast and provide deeper penetration imaging at laser fluences causing minimal damage to healthy tissue. One contrast mechanism (optical absorption/photoacoustics) allows us to validate localization of the agent and another (acoustic impedance/ultrasound) allows the imaging of therapeutic delivery after particle activation. In this work, we show the potential of these PFH-NEs to be used as multimodal imaging agents and for therapy.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/terapia , Medios de Contraste/uso terapéutico , Fluorocarburos/uso terapéutico , Medios de Contraste/química , Emulsiones/química , Emulsiones/uso terapéutico , Femenino , Fluorocarburos/química , Humanos , Células MCF-7 , Imagen Multimodal , Técnicas Fotoacústicas/métodos , Nanomedicina Teranóstica/métodos , Ultrasonografía/métodos , Volatilización
6.
Langmuir ; 32(42): 10870-10880, 2016 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-27564412

RESUMEN

Nanotechnology provides a promising platform for drug-delivery in medicine. Nanostructured materials can be designed with desired superparamagnetic or fluorescent properties in conjunction with biochemically functionalized moieties (i.e., antibodies, peptides, and small molecules) to actively bind to target sites. These multifunctional properties make them suitable agents for multimodal imaging, diagnosis, and therapy. Perfluorohexane nanoemulsions (PFH-NEs) are novel drug-delivery vehicles and contrast agents for ultrasound and photoacoustic imaging of cancer in vivo, offering higher spatial resolution and deeper penetration of tissue when compared to conventional optical techniques. Compared to other theranostic agents, our PFH-NEs are one of the smallest of their kind (<100 nm), exhibit minimal aggregation, long-term stability at physiological conditions, and provide a noninvasive cancer imaging and therapy alternative for patients. Here, we show, using high-resolution imaging and correlative techniques, that our PFH-NEs, when in tandem with silica-coated gold nanoparticles (scAuNPs), can be used as a drug-loaded therapeutic via endocytosis and as a multimodal imaging agent for photoacoustic, ultrasound, and fluorescence imaging of tumor growth.

7.
ACS Nano ; 8(1): 537-45, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24358932

RESUMEN

Cellular membranes are natural nanoengineering devices, where matter transport, information processing, and energy conversion across the nanoscale boundaries are mediated by membrane proteins (MPs). Despite the great potential of MPs for nanotechnologies, their broad utility in engineered systems is limited by the fluidic and often labile nature of MP-supporting membranes. Little is known on how to direct spontaneous reconstitution of MPs into robust synthetic nanomembranes or how to tune MP functions through rational design of these membranes. Here we report that proteorhodopsin (PR), a light-driven proton pump, can be spontaneously reconstituted into "frozen" (i.e., glassy state) amphiphilic block copolymer membranes via a charge-interaction-directed reconstitution mechanism. We show that PR is not enslaved by a fluidic or lipid-based membrane environment. Rather, well-defined block copolymer nanomembranes, with their tunable membrane moduli, act as allosteric regulators to support the structural integrity and function of PR. Versatile membrane designs exist to modulate the conformational energetics of reconstituted MPs, therefore optimizing proteomembrane stability and performance in synthetic systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA