Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(9): eade1112, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36857447

RESUMEN

Natural methane (CH4) emissions from aquatic ecosystems may rise because of human-induced climate warming, although the magnitude of increase is highly uncertain. Using an exceptionally large CH4 flux dataset (~19,000 chamber measurements) and remotely sensed information, we modeled plot- and landscape-scale wetland CH4 emissions from the Prairie Pothole Region (PPR), North America's largest wetland complex. Plot-scale CH4 emissions were driven by hydrology, temperature, vegetation, and wetland size. Historically, landscape-scale PPR wetland CH4 emissions were largely dependent on total wetland extent. However, regardless of future wetland extent, PPR CH4 emissions are predicted to increase by two- or threefold by 2100 under moderate or severe warming scenarios, respectively. Our findings suggest that international efforts to decrease atmospheric CH4 concentrations should jointly account for anthropogenic and natural emissions to maintain climate mitigation targets to the end of the century.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA