Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 58: 220-30, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23742762

RESUMEN

Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.


Asunto(s)
Envejecimiento/patología , Dineínas Citoplasmáticas/genética , Mitocondrias/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación/genética , Animales , Células Cultivadas , Embrión de Mamíferos , Femenino , Glucagón/sangre , Ácido Glutámico/genética , Humanos , Insulina/sangre , Lisina/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/ultraestructura , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Transfección
2.
Mol Neurodegener ; 6(1): 26, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21521523

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a progressive loss of motor neurons. ALS patients, as well as animal models such as mice overexpressing mutant SOD1s, are characterized by increased energy expenditure. In mice, this hypermetabolism leads to energy deficit and precipitates motor neuron degeneration. Recent studies have shown that mutations in the gene encoding the dynein heavy chain protein are able to extend lifespan of mutant SOD1 mice. It remains unknown whether the protection offered by these dynein mutations relies on a compensation of energy metabolism defects. RESULTS: SOD1(G93A) mice were crossbred with mice harboring the dynein mutant Cramping allele (Cra/+ mice). Dynein mutation increased adipose stores in compound transgenic mice through increasing carbohydrate oxidation and sparing lipids. Metabolic changes that occurred in double transgenic mice were accompanied by the normalization of the expression of key mRNAs in the white adipose tissue and liver. Furthermore, Dynein Cra mutation rescued decreased post-prandial plasma triglycerides and decreased non esterified fatty acids upon fasting. In SOD1(G93A) mice, the dynein Cra mutation led to increased expression of IGF-1 in the liver, increased systemic IGF-1 and, most importantly, to increased spinal IGF-1 levels that are potentially neuroprotective. CONCLUSIONS: These findings suggest that the protection against SOD1(G93A) offered by the Cramping mutation in the dynein gene is, at least partially, mediated by a reversal in energy deficit and increased IGF-1 availability to motor neurons.

3.
Biochim Biophys Acta ; 1812(1): 59-69, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20887786

RESUMEN

The molecular motor dynein is regulated by the huntingtin protein, and Huntington's disease (HD) mutations of huntingtin disrupt dynein motor activity. Besides abnormalities in the central nervous system, HD animal models develop prominent peripheral pathology, with defective brown tissue thermogenesis and dysfunctional white adipocytes, but whether this peripheral phenotype is recapitulated by dynein dysfunction is unknown. Here, we observed prominently increased adiposity in mice harboring the legs at odd angles (Loa/+) or the Cramping mutations (Cra/+) in the dynein heavy chain gene. In Cra/+ mice, hyperadiposity occurred in the absence of energy imbalance and was the result of impaired norepinephrine-stimulated lipolysis. A similar phenotype was observed in 3T3L1 adipocytes upon chemical inhibition of dynein showing that loss of functional dynein leads to impairment of lipolysis. Ex vivo, dynein mutant adipose tissue displayed increased reactive oxygen species production that was, at least partially, responsible for the decreased cellular responses to norepinephrine and subsequent defect in stimulated lipolysis. Dynein mutation also affected norepinephrine efficacy to elicit a thermogenic response and led to morphological abnormalities in brown adipose tissue and cold intolerance in dynein mutant mice. Interestingly, protein levels of huntingtin were decreased in dynein mutant adipose tissue. Collectively, our results provide genetic evidence that dynein plays a key role in lipid metabolism and thermogenesis through a modulation of oxidative stress elicited by norepinephrine. This peripheral phenotype of dynein mutant mice is similar to that observed in various animal models of HD, lending further support for a functional link between huntingtin and dynein.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Dineínas Citoplasmáticas/genética , Metabolismo Energético/genética , Mutación , Células 3T3-L1 , Agonistas alfa-Adrenérgicos/farmacología , Animales , Western Blotting , Dineínas Citoplasmáticas/metabolismo , Femenino , Expresión Génica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Lipólisis/efectos de los fármacos , Lipólisis/genética , Masculino , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Norepinefrina/farmacología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrés Oxidativo/efectos de los fármacos , Receptores Adrenérgicos beta 2/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Termogénesis/genética
4.
Exp Neurol ; 215(1): 146-52, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18952079

RESUMEN

In neurons, cytoplasmic dynein functions as a molecular motor responsible for retrograde axonal transport. An impairment of axonal transport is thought to play a key role in the pathogenesis of neurodegenerative diseases such as amyotrophic lateral sclerosis, the most frequent motor neuron disease in the elderly. In this regard, previous studies described two heterozygous mouse strains bearing missense point mutations in the dynein heavy chain 1 gene that were reported to display late-onset progressive motor neuron degeneration. Here we show, however, that one of these mutant strains, the so-called Cra mice does not suffer from motor neuron loss, even in aged animals. Consistently, we did not observe electrophysiological or biochemical signs of muscle denervation, indicative of motor neuron disease. The "hindlimb clasping" phenotype of Cra mice could rather be due to the prominent degeneration of sensory neurons associated with a loss of muscle spindles. Altogether, these findings show that dynein heavy chain mutation triggers sensory neuropathy rather than motor neuron disease.


Asunto(s)
Dineínas/genética , Mutación/genética , Trastornos de la Sensación/genética , Trastornos de la Sensación/fisiopatología , Factores de Edad , Análisis de Varianza , Animales , Benzofuranos , Colina O-Acetiltransferasa/metabolismo , Dineínas Citoplasmáticas , Modelos Animales de Enfermedad , Electromiografía/métodos , Ratones , Ratones Endogámicos C3H , Ratones Mutantes , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/fisiopatología , Neuronas Motoras/patología , Desnervación Muscular/métodos , Músculo Esquelético/fisiología , Unión Neuromuscular/patología , Trastornos de la Sensación/patología , Raíces Nerviosas Espinales/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
5.
J Lipid Res ; 48(7): 1571-80, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17438338

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most common adult motor neuron disease, causing motor neuron degeneration, muscle atrophy, paralysis, and death. Despite this degenerative process, a stable hypermetabolic state has been observed in a large subset of patients. Mice expressing a mutant form of Cu/Zn-superoxide dismutase (mSOD1 mice) constitute an animal model of ALS that, like patients, exhibits unexpectedly increased energy expenditure. Counterbalancing for this increase with a high-fat diet extends lifespan and prevents motor neuron loss. Here, we investigated whether lipid metabolism is defective in this animal model. Hepatic lipid metabolism was roughly normal, whereas gastrointestinal absorption of lipids as well as peripheral clearance of triglyceride-rich lipoproteins were markedly increased, leading to decreased postprandial lipidemia. This defect was corrected by the high-fat regimen that typically induces neuroprotection in these animals. Together, our findings show that energy metabolism in mSOD1 mice shifts toward an increase in the peripheral use of lipids. This metabolic shift probably accounts for the protective effect of dietary lipids in this model.


Asunto(s)
Esclerosis Amiotrófica Lateral/fisiopatología , Lípidos/sangre , Superóxido Dismutasa/genética , Animales , Metabolismo Energético , Femenino , Perfilación de la Expresión Génica , Absorción Intestinal , Hígado/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Superóxido Dismutasa-1 , Triglicéridos/sangre
6.
J Neurochem ; 101(5): 1153-60, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17250677

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most frequent adult-onset motor neuron disease characterized by degeneration of upper and lower motor neurons, generalized weakness and muscle atrophy. Most cases of ALS appear sporadically but some forms of the disease result from mutations in the gene encoding the antioxidant enzyme Cu/Zn superoxide dismutase (SOD1). Several other mutated genes have also been found to predispose to ALS including, among others, one that encodes the regulator of axonal retrograde transport dynactin. As all roads lead to the proverbial Rome, we discuss here how distinct molecular pathways may converge to the same final result that is motor neuron death. We critically review the basic research on SOD1-linked ALS to propose a pioneering model of a 'systemic' form of the disease, causally involving multiple cell types, either neuronal or non-neuronal. Contrasting this, we also postulate that other neuron-specific defects, as those triggered by dynactin dysfunction, may account for a primary motor neuron disease that would represent 'pure' neuronal forms of ALS. Identifying different disease subtypes is an unavoidable step toward the understanding of the physiopathology of ALS and will hopefully help to design specific treatments for each subset of patients.


Asunto(s)
Esclerosis Amiotrófica Lateral , Neuronas Motoras/patología , Mutación , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Modelos Animales de Enfermedad , Complejo Dinactina , Humanos , Proteínas Asociadas a Microtúbulos/genética , Modelos Biológicos , Superóxido Dismutasa-1
7.
EMBO Rep ; 7(11): 1162-7, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17039253

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss and muscle wasting. In muscles of ALS patients, Nogo-A-a protein known to inhibit axon regeneration-is ectopically expressed at levels that correlate with the severity of the clinical symptoms. We now show that the genetic ablation of Nogo-A extends survival and reduces muscle denervation in a mouse model of ALS. In turn, overexpression of Nogo-A in wild-type muscle fibres leads to shrinkage of the postsynapse and retraction of the presynaptic motor ending. This suggests that the expression of Nogo-A occurring early in ALS skeletal muscle could cause repulsion and destabilization of the motor nerve terminals, and subsequent dying back of the axons and motor neurons.


Asunto(s)
Esclerosis Amiotrófica Lateral/terapia , Modelos Animales de Enfermedad , Desnervación Muscular , Músculos/metabolismo , Proteínas de la Mielina/metabolismo , Esclerosis Amiotrófica Lateral/inducido químicamente , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculos/inervación , Proteínas de la Mielina/genética , Proteínas de la Mielina/fisiología , Unión Neuromuscular/fisiopatología , Proteínas Nogo , Superóxido Dismutasa/genética , Superóxido Dismutasa-1 , Transfección
8.
Neurodegener Dis ; 2(3-4): 185-94, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16909024

RESUMEN

Reticulons (RTNs) are a family of proteins that are primarily associated with the endoplasmic reticulum. In mammals, four genes have been identified and referred as to rtn1, 2, 3 and the neurite outgrowth inhibitor rtn4/nogo. These genes generate multiple isoforms that contain a common C-terminal reticulon homology domain of 150-200 amino-acid residues. The N-terminal regions of RTNs are highly variable, and result from alternative splicing or differential promoter usage. Although widely distributed, the functions of RTNs are still poorly understood. Much interest has been focused on rtn4/nogo because of its activity as a potent inhibitor of axonal growth and repair. In the present study, we update recent knowledge on mammalian RTNs paying special attention to the involvement of these proteins as markers of neurological diseases. We also present recent data concerning RTN expression in amyotrophic lateral sclerosis, a fatal degenerative disorder characterized by loss of upper and lower motor neurons, and muscle atrophy. The rearrangement of RTN expression is regulated not only in suffering skeletal muscle but also preceding the onset of symptoms, and may relate to the disease process.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/metabolismo , Proteínas Portadoras/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA