Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 133(2): 021802, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39073961

RESUMEN

The first results of the study of high-energy electron neutrino (ν_{e}) and muon neutrino (ν_{µ}) charged-current interactions in the FASERν emulsion-tungsten detector of the FASER experiment at the LHC are presented. A 128.8 kg subset of the FASERν volume was analyzed after exposure to 9.5 fb^{-1} of sqrt[s]=13.6 TeV pp data. Four (eight) ν_{e} (ν_{µ}) interaction candidate events are observed with a statistical significance of 5.2σ (5.7σ). This is the first direct observation of ν_{e} interactions at a particle collider and includes the highest-energy ν_{e} and ν_{µ} ever detected from an artificial source. The interaction cross section per nucleon σ/E_{ν} is measured over an energy range of 560-1740 GeV (520-1760 GeV) for ν_{e} (ν_{µ}) to be (1.2_{-0.7}^{+0.8})×10^{-38} cm^{2} GeV^{-1} [(0.5±0.2)×10^{-38} cm^{2} GeV^{-1}], consistent with standard model predictions. These are the first measurements of neutrino interaction cross sections in those energy ranges.

2.
Phys Rev Lett ; 131(3): 031801, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37540863

RESUMEN

We report the first direct observation of neutrino interactions at a particle collider experiment. Neutrino candidate events are identified in a 13.6 TeV center-of-mass energy pp collision dataset of 35.4 fb^{-1} using the active electronic components of the FASER detector at the Large Hadron Collider. The candidates are required to have a track propagating through the entire length of the FASER detector and be consistent with a muon neutrino charged-current interaction. We infer 153_{-13}^{+12} neutrino interactions with a significance of 16 standard deviations above the background-only hypothesis. These events are consistent with the characteristics expected from neutrino interactions in terms of secondary particle production and spatial distribution, and they imply the observation of both neutrinos and anti-neutrinos with an incident neutrino energy of significantly above 200 GeV.

3.
Sensors (Basel) ; 22(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458904

RESUMEN

The radiation hardness of 180 nm complementary metal-oxide-semiconductor (CMOS) and 55 nm bipolar-CMOS-double-diffused MOS single-photon avalanche diodes (SPADs) is studied using 10 MeV and 100 MeV protons up to a displacement damage dose of 1 PeV/g. It is found that the dark count rate (DCR) levels are dependent on the number and the type of defects created. A new stepwise increase in the DCR is presented. Afterpulsing was found to be a significant contributor to the observed DCR increase. A new model for DCR increase prediction is proposed considering afterpulsing. Most of the samples under test retain reasonable DCR levels after irradiation, showing high tolerance to ionizing and displacement damage caused by protons. Following irradiation, self-healing was observed at room temperature. Furthermore, high-temperature annealing shows potential for accelerating recovery. Overall, the results show the suitability of SPADs as optical detectors for long-term space missions or as detectors for high-energy particles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA