Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neural Regen Res ; 17(4): 806-811, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34472479

RESUMEN

Pain is one of the manifestations of hip disorder and has been proven to lead to the remodeling of somatotopic map plasticity in the cortex. However, most studies are volume-based which may lead to inaccurate anatomical positioning of functional data. The methods that work on the cortical surface may be more sensitive than those using the full brain volume and thus be more suitable for map plasticity study. In this prospective cross-sectional study performed in Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, China, 20 patients with osteonecrosis of the femoral head (12 males and 8 females, aged 56.80 ± 13.60 years) and 20 healthy controls (9 males and 11 females, aged 54.56 ± 10.23 years) were included in this study. Data of resting-state functional magnetic resonance imaging were collected. The results revealed that compared with healthy controls, compared with the healthy controls, patients with osteonecrosis of the femoral head (ONFH) showed significantly increased surface-based regional homogeneity (ReHo) in areas distributed mainly in the left dorsolateral prefrontal cortex, frontal eye field, right frontal eye field, and the premotor cortex and decreased surface-based ReHo in the right primary motor cortex and primary sensory cortex. Regions showing significant differences in surface-based ReHo values between the healthy controls and patients with ONFH were defined as the regions of interests. Seed-based functional connectivity was performed to investigate interregional functional synchronization. When the areas with decreased surface-based ReHo in the frontal eye field and right premotor cortex were used as the regions of interest, compared with the healthy controls, the patients with ONFH displayed increased functional connectivity in the right middle frontal cortex and right inferior parietal cortex and decreased functional connectivity in the right precentral cortex and right middle occipital cortex. Compared with healthy controls, patients with ONFH showed significantly decreased cortical thickness in the para-insular area, posterior insular area, anterior superior temporal area, frontal eye field and supplementary motor cortex and reduced volume of subcortical gray matter nuclei in the right nucleus accumbens. These findings suggest that hip disorder patients showed cortical plasticity changes, mainly in sensorimotor- and pain-related regions. This study was approved by the Medical Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine (approval No. 2018-041) on August 1, 2018.

2.
Pain Physician ; 25(9): E1475-E1484, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36608019

RESUMEN

BACKGROUND: Patients with osteonecrosis of the femoral head  commonly present with sensorimotor anomalies. With independent component analysis, it is possible to explore the intrinsic alternations in highly specific functional networks. We used independent component analysis to examine the intrinsic changes and interactive connectivity between related functional resting-state networks. OBJECTIVE: The purpose of this study was to strengthen the theoretical basis of brain plasticity after osteonecrosis of the femoral head to provide new insights into clinical treatment. STUDY DESIGN: Observational study. SETTING: School of rehabilitation science of a university. METHODS: Functional magnetic resonance imaging data were acquired from 14 patients with osteonecrosis of the femoral head and 20 healthy controls. All the data underwent preprocessing and analysis of the intrinsic brain functional connectivity within and between resting-state networks. RESULTS: Nine resting-state networks were identified via independent component analysis. When compared to healthy controls, the osteonecrosis of the femoral head patients showed abnormal activity in these networks. With respect to the internetwork interactions, increased functional connectivity  was detected between the sensorimotor network and right frontoparietal network and between the dorsal attention network and frontoparietal network bilaterally. LIMITATIONS: This study was a cross-sectional design. A longitudinal study of the dynamic changes in multinetwork functional connectivity can help to elucidate the central mechanisms of osteonecrosis of the femoral head. CONCLUSIONS: This study investigated the alterations in resting-state network functional connectivity in osteonecrosis of the femoral head patients. Examining the large-scale functional reorganization in osteonecrosis of the femoral head patients may be helpful for us to understand the pathological mechanisms underlying dysfunction and shed light on potential behavioral treatments for osteonecrosis of the femoral head based on functional magnetic resonance imaging in clinical practice. Understanding the mechanisms of the disease may shed light on potential behavioral treatments for patients with osteonecrosis of the femoral head based on functional magnetic resonance imaging findings.


Asunto(s)
Imagen por Resonancia Magnética , Osteonecrosis , Humanos , Imagen por Resonancia Magnética/métodos , Mapeo Encefálico/métodos , Estudios Longitudinales , Estudios Transversales , Cabeza Femoral , Encéfalo/diagnóstico por imagen
3.
PeerJ ; 9: e11759, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484979

RESUMEN

BACKGROUND: Pain, a major symptom of osteonecrosis of the femoral head (ONFH), is a complex sensory and emotional experience that presents therapeutic challenges. Pain can cause neuroplastic changes at the cortical level, leading to central sensitization and difficulties with curative treatments; however, whether changes in structural and functional plasticity occur in patients with ONFH remains unclear. METHODS: A total of 23 ONFH inpatients who did not undergo surgery (14 males, nine females; aged 55.61 ± 13.79 years) and 20 controls (12 males, eight females; aged 47.25 ± 19.35 years) were enrolled. Functional indices of the amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and a structural index of tract-based spatial statistics (TBSS) were calculated for each participant. The probability distribution of fiber direction was determined according to the ALFF results. RESULTS: ONFH patients demonstrated increased ALFF in the bilateral dorsolateral superior frontal gyrus, right medial superior frontal gyrus, right middle frontal gyrus, and right supplementary motor area. In contrast, ONFH patients showed decreased ReHo in the left superior parietal gyrus and right inferior temporal gyrus. There were no significant differences in TBSS or probabilistic tractography. CONCLUSION: These results indicate cerebral pain processing in ONFH patients. It is advantageous to use functional magnetic resonance imaging to better understand pain pathogenesis and identify new therapeutic targets in ONFH patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA