Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Physiol ; 528(Pt 3): 521-37, 2000 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-11060129

RESUMEN

Using whole-cell patch-clamp recording techniques, we have examined voltage-gated ion currents in a cultured human intestinal smooth muscle cell line (HISM). Experiments were performed at room temperature on cells after passages 16 and 17. Two major components of the whole-cell current were a tetraethylammonium-sensitive (IC50 = 9 mM), iberiotoxin-resistant, delayed rectifier K+ current and a Na+ current inhibited by tetrodotoxin (IC50 A 100 nM). No measurable inward current via voltage-gated Ca2+ channels could be detected in these cells even with 10 mM Ca2+ or Ba2+ in the external solution. No current attributable to calcium-activated K+ channels was found and no cationic current in response to muscarinic receptor activation was present. In divalent cation-free external solution two additional currents were activated: an inwardly rectifying hyperpolarization-activated current, I(HA), and a depolarization-activated current, I(DA) x I(HA) and I(DA) could be carried by several monovalent cations; the sizes of currents in descending order were: K+ > Cs+ > Na+ for I(HA) and Na+ > K+ >> Cs+ for I(DA). I(HA) was activated and deactivated instantaneously and showed no inactivation whereas I(DA) was activated, inactivated and deactivated within tens of milliseconds. These currents were inhibited by external calcium with an IC50 of 0.3 microM for I(DA) and an IC50 of 20 microM for I(HA). Cyclopiazonic acid (CPA) induced an outward, but not an inward current. SK&F 96365, a blocker of store-operated Ca2+ channels, suppressed I(DA) with a half-maximal inhibitory concentration of 9 microM but was ineffective in inhibiting I(HA) at concentrations up to 100 microM. Gd3+ and La3+ strongly suppressed I(DA) at 1 and 10 microM, respectively and were less effective in blocking I(HA) (complete inhibition required a concentration of 100 microM for both). Carbachol at 10-100 microM evoked about a 3-fold increase in I(HA) amplitude and completely abolished I(DA). We conclude that I(HA) and I(DA) are Ca2+-blockable cationic currents with different ion selectivity profiles that are carried by different channels. I(DA) shows novel voltage-dependent properties for a cationic current.


Asunto(s)
Mucosa Intestinal/metabolismo , Canales Iónicos/fisiología , Músculo Liso/metabolismo , Cationes/metabolismo , Línea Celular , Conductividad Eléctrica , Humanos , Intestinos/citología , Músculo Liso/citología , Técnicas de Placa-Clamp , Canales de Sodio/efectos de los fármacos , Canales de Sodio/fisiología , Tetrodotoxina/farmacología
2.
J Physiol ; 496 ( Pt 2): 299-316, 1996 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-8910217

RESUMEN

1. The resting membrane potential of freshly purified normodense human eosinophils bathed in and dialysed with quasi-physiological solutions was -63 +/- 2 mV (n = 100). 2. In voltage-clamp mode with quasi-physiological internal and external solutions, voltage steps from the holding potential of -60 mV to levels positive to +20 mV resulted in development of a quasi-instantaneous outward current and a slowly developing outward current. The instantaneous current was absent when the cells were bathed in and dialysed with K(+)-free solution. 3. The slow outward current persisted following simultaneous replacement of K+, Na+ and most of the Cl- with largely impermeant ions (tetraethylammonium, N-methyl-D-glucamine and methanesulphonate) and was augmented when the cell was dialysed with a solution of increased buffering capacity for protons. The observed reversal potential of the current closely followed the hydrogen equilibrium potential over a wide range of internal-external pH combinations, indicating that the conductance underlying the slow outward current was highly selective for H+ ions. 4. Acidification of the pipette solution (increasing [H+]i) augmented the outward H+ current and shifted its activation range negatively, whilst acidification of the external solution had the opposite effect. The voltage dependence of the current is modulated by the transmembrane pH gradient so the only outward current could be activated. However, when the outward current was activated by a voltage step, rapid acidification of external solution produced an inward H+ current which rapidly deactivated. 5. The proton current was reversibly inhibited in a voltage-dependent manner by extracellular application of Zn2+. The apparent dissociation constants were 8 nM (at +40 mV), 36 nM (at +70 mV) and 200 nM (at +100 mV). 6. The proton current was augmented by exposure to 10 microM arachidonic acid. This augmentation consisted of a shift of the voltage dependence of activation to more negative potentials and enhancement of maximum conductance (gH,max). The proton current recorded in eosinophils was significantly augmented under conditions of elevated cytosolic free calcium concentration ([Ca2+]i). The threshold level of [Ca2+]i associated with this effect lay between 0.1 and 1 microM and was not measurably affected by cytosolic acidification. 7. Eosinophils from human blood possess a voltage-dependent H+ conductance (gH) which normally allows protons to move outwards only; raising [Ca2+]i was associated with augmentation of gH and intracellular acidification or arachidonate shifted its activation range negatively towards physiological potentials.


Asunto(s)
Eosinófilos/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Adulto , Ácido Araquidónico/farmacología , Calcio/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Electrofisiología , Femenino , Humanos , Concentración de Iones de Hidrógeno , Técnicas In Vitro , Canales Iónicos/efectos de los fármacos , Canales Iónicos/metabolismo , Masculino , Potenciales de la Membrana/fisiología , Persona de Mediana Edad , Técnicas de Placa-Clamp , Protones , Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA