Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Macromol Biosci ; : e2400082, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850104

RESUMEN

The ubiquitous mold Aspergillus fumigatus (A. fumigatus) is one of the main fungal pathogens causing invasive infections in immunocompromised humans. Conventional antifungal agents exhibit limited efficacy and often cause severe side effects. Nanoparticle-based antifungal delivery provides a promising alternative, which can increase local drug concentration; while, mitigating toxicity, thereby enhancing treatment efficacy. Previous research underscores the potential of poly(glycidol)-based nanogels (NG) with negative surface charge as carriers for delivering antifungals to A. fumigatus hyphae. In this study, NG is tailored with 2-carboxyethyl acrylate (CEA) or with phosphoric acid 2-hydroxyethyl acrylate (PHA). It is discovered that quenching with PHA clearly improves the adhesion of NG to hyphal surface and the internalization of NG into the hyphae under protein-rich conditions, surpassing the outcomes of non-quenched and CEA-quenched NG. This enhancement cannot be solely attributed to an increase in negative surface charge but appears to be contingent on the functional group of the quencher. Further, it is demonstrated that itraconazole-loaded, PHA-functionalized nanogels (NGxPHA-ITZ) show lower MIC in vitro and superior therapeutic effect in vivo against A. fumigatus compared to pure itraconazole. This confirms NGxPHA as a promising antifungal delivery system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA