Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Med Image Anal ; 97: 103253, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38968907

RESUMEN

Airway-related quantitative imaging biomarkers are crucial for examination, diagnosis, and prognosis in pulmonary diseases. However, the manual delineation of airway structures remains prohibitively time-consuming. While significant efforts have been made towards enhancing automatic airway modelling, current public-available datasets predominantly concentrate on lung diseases with moderate morphological variations. The intricate honeycombing patterns present in the lung tissues of fibrotic lung disease patients exacerbate the challenges, often leading to various prediction errors. To address this issue, the 'Airway-Informed Quantitative CT Imaging Biomarker for Fibrotic Lung Disease 2023' (AIIB23) competition was organized in conjunction with the official 2023 International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI). The airway structures were meticulously annotated by three experienced radiologists. Competitors were encouraged to develop automatic airway segmentation models with high robustness and generalization abilities, followed by exploring the most correlated QIB of mortality prediction. A training set of 120 high-resolution computerised tomography (HRCT) scans were publicly released with expert annotations and mortality status. The online validation set incorporated 52 HRCT scans from patients with fibrotic lung disease and the offline test set included 140 cases from fibrosis and COVID-19 patients. The results have shown that the capacity of extracting airway trees from patients with fibrotic lung disease could be enhanced by introducing voxel-wise weighted general union loss and continuity loss. In addition to the competitive image biomarkers for mortality prediction, a strong airway-derived biomarker (Hazard ratio>1.5, p < 0.0001) was revealed for survival prognostication compared with existing clinical measurements, clinician assessment and AI-based biomarkers.


Asunto(s)
Biomarcadores , Fibrosis Pulmonar , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Fibrosis Pulmonar/diagnóstico por imagen , Benchmarking , Interpretación de Imagen Radiográfica Asistida por Computador/métodos
2.
Br J Radiol ; 97(1161): 1517-1525, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38781513

RESUMEN

The licensing of antifibrotic therapy for fibrotic lung diseases, including idiopathic pulmonary fibrosis (IPF), has created an urgent need for reliable biomarkers to predict disease progression and treatment response. Some patients experience stable disease trajectories, while others deteriorate rapidly, making treatment decisions challenging. High-resolution chest CT has become crucial for diagnosis, but visual assessments by radiologists suffer from low reproducibility and high interobserver variability. To address these issues, computer-based image analysis, called quantitative CT, has emerged. However, many quantitative CT methods rely on human input for training, therefore potentially incorporating human error into computer training. Rapid advances in artificial intelligence, specifically deep learning, aim to overcome this limitation by enabling autonomous quantitative analysis. While promising, deep learning also presents challenges including the need to minimize algorithm biases, ensuring explainability, and addressing accessibility and ethical concerns. This review explores the development and application of deep learning in improving the imaging process for fibrotic lung disease.


Asunto(s)
Aprendizaje Profundo , Fibrosis Pulmonar Idiopática , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Pronóstico , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Pulmón/diagnóstico por imagen , Pulmón/patología , Reproducibilidad de los Resultados , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Fibrosis Pulmonar/diagnóstico por imagen
3.
ERJ Open Res ; 9(4)2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37404849

RESUMEN

The advent of quantitative computed tomography (QCT) and artificial intelligence (AI) using high-resolution computed tomography data has revolutionised the way interstitial diseases are studied. These quantitative methods provide more accurate and precise results compared to prior semiquantitative methods, which were limited by human error such as interobserver disagreement or low reproducibility. The integration of QCT and AI and the development of digital biomarkers has facilitated not only diagnosis but also prognostication and prediction of disease behaviour, not just in idiopathic pulmonary fibrosis in which they were initially studied, but also in other fibrotic lung diseases. These tools provide reproducible, objective prognostic information which may facilitate clinical decision-making. However, despite the benefits of QCT and AI, there are still obstacles that need to be addressed. Important issues include optimal data management, data sharing and maintenance of data privacy. In addition, the development of explainable AI will be essential to develop trust within the medical community and facilitate implementation in routine clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA