Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 203: 111016, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32888590

RESUMEN

Selenium (Se) is considered a beneficial element to higher plants based on its regulation of antioxidative system under abiotic or biotic stresses. However, the limit of beneficial and toxic physiological effects of Se is very narrow. In the present study, the antioxidant performance, nutritional composition, long-distance transport of Se, photosynthetic pigments, and growth of Coffea arabica genotypes in response to Se concentration in solution were evaluated. Five Coffea arabica genotypes (Obatã, IPR99, IAC125, IPR100 and Catucaí) were used, which were grown in the absence and presence of Se (0 and 1.0 mmol L-1) in nutrient solution. The application of 1 mmol L-1 Se promoted root browning in all genotypes. There were no visual symptoms of leaf toxicity, but there was a reduction in the concentration of phosphorus and sulfur in the shoots of plants exposed to high Se concentration. Except for genotype Obatã, the coffee seedlings presented strategies for regulating Se uptake by reducing long-distance transport of Se from roots to shoots. The concentrations of total chlorophyll, total pheophytin, and carotenoids were negatively affected in genotypes Obatã, IPR99, and IAC125 upon exposure to Se at 1 mmol L-1. H2O2 production was reduced in genotypes IPR99, IPR100, and IAC125 upon exposure to Se, resulting in lower activity of superoxide dismutase (SOD), and catalase (CAT). These results suggest that antioxidant metabolism was effective in regulating oxidative stress in plants treated with Se. The increase in sucrose, and decrease in SOD, CAT and ascorbate peroxidase (APX) activities, as well as Se compartmentalization in the roots, were the main biochemical and physiological modulatory effects of coffee seedlings under stress conditions due to excess of Se.


Asunto(s)
Antioxidantes/metabolismo , Coffea/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Selenio/farmacología , Coffea/genética , Coffea/metabolismo , Coffea/fisiología , Genotipo , Oxidación-Reducción , Fotosíntesis/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/metabolismo , Plantones/fisiología , Selenio/análisis , Selenio/metabolismo , Especificidad de la Especie
2.
BMC Res Notes ; 12(1): 663, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31627730

RESUMEN

OBJECTIVE: Trichoderma species are found in soil and in association with plants. They can act directly or indirectly in the biological control of plant diseases and in the promotion of plant growth, being among the most used fungi in the formulation of bioproducts applied to agricultural systems. The main objective of this study was to characterize at a first-tier level a collection of 67 Trichoderma isolates from various tropical sources, based solely on sequencing of the internal transcribed spacer (ITS) region of the rRNA genes. Our goal was to provide a preliminary idea of the baseline diversity in this collection, to combine this information later with an array of other isolate-specific physiological data. This study provides a required knowledge at molecular level for assessment of this germplasm potential as a source of biotechnological products for beneficial effects in plants. RESULTS: Sequencing of the ITS region showed that the 67 Trichoderma isolates belonged in 11 species: T. asperellum, T. atroviride, T. brevicompactum, T. harzianum, T. koningiopsis, T. longibrachiatum, T. pleuroticola, T. reesei, T. spirale, T. stromaticum and T. virens. A total of 40.3% of the isolates were very closely related to each other and similar to T. harzianum. The baseline genetic diversity found indicates that the collection has different genotypes, which can be exploited further as a source of bioproducts, aiming at providing beneficial effects to plants of interest to cope with biotic and abiotic stresses.


Asunto(s)
ADN Espaciador Ribosómico/genética , Variación Genética , ARN Ribosómico/genética , Trichoderma/genética , Clima Tropical , ADN de Hongos/análisis , ADN de Hongos/genética , Ecosistema , Genotipo , Filogenia , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie , Trichoderma/clasificación , Trichoderma/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA