Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PDA J Pharm Sci Technol ; 78(3): 214-236, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38942477

RESUMEN

Leachables in pharmaceutical products may react with biomolecule active pharmaceutical ingredients (APIs), for example, monoclonal antibodies (mAb), peptides, and ribonucleic acids (RNA), potentially compromising product safety and efficacy or impacting quality attributes. This investigation explored a series of in silico models to screen extractables and leachables to assess their possible reactivity with biomolecules. These in silico models were applied to collections of known leachables to identify functional and structural chemical classes likely to be flagged by these in silico approaches. Flagged leachable functional classes included antimicrobials, colorants, and film-forming agents, whereas specific chemical classes included epoxides, acrylates, and quinones. In addition, a dataset of 22 leachables with experimental data indicating their interaction with insulin glargine was used to evaluate whether one or more in silico methods are fit-for-purpose as a preliminary screen for assessing this biomolecule reactivity. Analysis of the data showed that the sensitivity of an in silico screen using multiple methodologies was 80%-90% and the specificity was 58%-92%. A workflow supporting the use of in silico methods in this field is proposed based on both the results from this assessment and best practices in the field of computational modeling and quality risk management.


Asunto(s)
Simulación por Computador , Contaminación de Medicamentos , Contaminación de Medicamentos/prevención & control , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/análisis , Anticuerpos Monoclonales/química
3.
AAPS PharmSciTech ; 16(3): 664-74, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25511807

RESUMEN

The effective management of leachables in pharmaceutical products is a critical aspect of their development. This can be facilitated if extractables information on the materials used in a packaging or delivery system is available to assist companies in selecting materials that will be compatible with the drug product formulation and suitable for the intended use. The Extractables and Leachables Safety Information Exchange (ELSIE) materials working group developed and executed a comprehensive extraction study protocol that included a number of extraction solvents, extraction techniques, and a variety of analytical techniques. This was performed on two test materials, polyethylene (PE) and polyvinyl chloride (PVC), that were selected due to their common use in pharmaceutical packaging. The purpose of the study was to investigate if the protocol could be simplified such that (i) a reduced number or even a single extraction technique could be used and (ii) a reduced number of solvents could be used to obtain information that is useful for material selection regardless of product type. Results indicate that, at least for the PVC, such reductions are feasible. Additionally, the studies indicate that levels of extractable elemental impurities in the two test materials were low and further confirm the importance of using orthogonal analytical detection techniques to gain adequate understanding of extraction profiles.


Asunto(s)
Polietileno/química , Cloruro de Polivinilo/química , Contaminación de Medicamentos , Embalaje de Medicamentos/métodos , Preparaciones Farmacéuticas/química , Proyectos Piloto , Solventes/química
4.
Anal Chim Acta ; 706(2): 305-11, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22023866

RESUMEN

Knowledge on the solubility behaviour and dissolution rate of speciality and commodity polymers is very important for the use of such materials in high-tech applications. We have developed methods for the quantification and characterization of dissolved copolymers of N-vinyl-2-pyrrolidone (VP) and vinyl acetate (VA) during dissolution in water. The methods are based on pyrolysis (Py) performed in a programmed-temperature vaporization injector with subsequent identification and quantification of the components in the pyrolysate using capillary gas chromatography-mass spectrometry (GC-MS). By injecting large volumes and applying cryo-focussing at the top of the column, low detection limits could be achieved. The monomer ratio was found to have the greatest effect on the dissolution rate of the PVP-co-VA copolymers. The material with the highest amount of VA (50%) dissolves significantly slower than the other grades. Size-exclusion chromatography (SEC) and Py-GC-MS were used to measure molecular weights and average chemical compositions, respectively. Combined off-line SEC//Py-GC-MS was used to determine the copolymer composition (VP/VA ratio), as a function of the molecular weight for the pure polymers. In the dissolution experiments, a constant VP/VA ratio across the dissolution curve was observed for all copolymers analysed. This suggests a random distribution of the two monomers over the molecules.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas/métodos , Pirrolidinas/química , Compuestos de Vinilo/química , Cromatografía en Gel , Cinética , Peso Molecular , Pirrolidinas/aislamiento & purificación , Temperatura , Compuestos de Vinilo/aislamiento & purificación , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA