Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Med Microbiol ; 303(5): 230-8, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23684234

RESUMEN

Staphylococcus aureus and Candida species are increasingly coisolated from implant-associated polymicrobial infections creating an incremental health care problem. Synergistic effects between both genera seem to facilitate the formation of mixed S. aureus-Candida biofilms, which is thought to play a critical role in coinfections with these microorganisms. To identify and characterize S. aureus factors involved in the interaction with Candida species, we affinity-panned an S. aureus phage display library against Candida biofilms in the presence or absence of fibrinogen. Repeatedly isolated clones contained DNA fragments encoding portions of the S. aureus fibrinogen-binding proteins coagulase or Efb. The coagulase binds to prothrombin in a 1:1 ratio thereby inducing a conformational change and non-proteolytic activation of prothrombin, which in turn cleaves fibrinogen to fibrin. Efb has been known to inhibit opsonization. To study the role of coagulase and Efb in the S. aureus-Candida cross-kingdom interaction, we performed flow-cytometric phagocytosis assays. Preincubation with coagulase reduced the phagocytosis of Candida yeasts by granulocytes significantly and dose-dependently. By using confocal laser scanning microscopy, we demonstrated that the coagulase mediated the formation of fibrin surrounding the candidal cells. Furthermore, the addition of Efb significantly protected the yeasts against phagocytosis by granulocytes in a dose-dependent and saturable fashion. In conclusion, the inhibition of phagocytosis of Candida cells by coagulase and Efb via two distinct mechanisms suggests that S. aureus might be beneficial for Candida to persist as it helps Candida to circumvent the host immune system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Candida/fisiología , Coagulasa/metabolismo , Fibrinógeno/metabolismo , Interacciones Microbianas , Staphylococcus aureus/fisiología , Candida/inmunología , Granulocitos/inmunología , Humanos , Fagocitosis , Unión Proteica , Staphylococcus aureus/inmunología
2.
Arthritis Res Ther ; 11(1): R16, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19196465

RESUMEN

INTRODUCTION: The rheumatoid arthritis (RA) synovium is characterised by the presence of an aggressive population of activated synovial fibroblasts (RASFs) that are prominently involved in the destruction of articular cartilage and bone. Accumulating evidence suggests that RASFs are relatively resistant to Fas-ligand (FasL)-induced apoptosis, but the data concerning tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) have been conflicting. Here, we hypothesise that the susceptibility of RASFs to receptor-mediated apoptosis depends on the proliferation status of these cells and therefore analysed the cell cycle dependency of FasL- and TRAIL-induced programmed cell death of RASFs in vitro. METHODS: Synovial fibroblasts were isolated from patients with RA by enzymatic digestion and cultured under standard conditions. Cell cycle analysis was performed using flow cytometry and staining with propidium iodide. RASFs were synchronised or arrested in various phases of the cell cycle with 0.5 mM hydroxyurea or 2.5 microg/ml nocodazol and with foetal calf serum-free insulin-transferrin-sodium selenite supplemented medium. Apoptosis was induced by stimulation with 100 ng/ml FasL or 100 ng/ml TRAIL over 18 hours. The apoptotic response was measured using the Apo-ONE Homogenous Caspase-3/7 Assay (Promega GmbH, Mannheim, Germany) and the Cell Death Detection (ELISAPlus) (enzyme-linked immunosorbent assay) (Roche Diagnostics GmbH, Mannheim, Germany). Staurosporin-treated cells (1 microg/ml) served as a positive control. Expression of Fas and TRAIL receptors (TRAILR1-4) was determined by fluorescence-activated cell sorting analysis. RESULTS: Freshly isolated RASFs showed only low proliferation in vitro, and the rate decreased further over time, particularly when RASFs became confluent. RASFs expressed Fas, TRAIL receptor-1, and TRAIL receptor-2, and the expression levels were independent of the cell cycle. However, the proliferation rate significantly influenced the susceptibility to FasL- and TRAIL-induced apoptosis. Specifically, proliferating RASFs were less sensitive to FasL- and TRAIL-induced apoptosis than RASFs with a decreased proliferation rate. Furthermore, RASFs that were synchronised in S phase or G2/M phase were less sensitive to TRAIL-induced apoptosis than synchronised RASFs in G0/G1 phase. CONCLUSIONS: Our data indicate that the susceptibility of RASFs to FasL- and TRAIL-induced apoptosis depends on the cell cycle. These results may explain some conflicting data on the ability of RASFs to undergo FasL- and TRAIL-mediated cell death and suggest that strategies to sensitise RASFs to apoptosis may include the targeting of cell cycle-regulating genes.


Asunto(s)
Apoptosis/fisiología , Artritis Reumatoide/patología , Ciclo Celular/fisiología , Fibroblastos/patología , Membrana Sinovial/patología , Artritis Reumatoide/metabolismo , Proliferación Celular , Proteína Ligando Fas/metabolismo , Fibroblastos/metabolismo , Citometría de Flujo , Humanos , Membrana Sinovial/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA