Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275719

RESUMEN

The application of terahertz (THz) science in industrial technology and scientific research requires efficient THz detectors. Such detectors should be able to operate under various external conditions and conform to existing geometric constraints in the required application. Pyroelectric THz detectors are among the best candidates. This is due to their versatility, outstanding performance, ease of fabrication, and robustness. In this paper, we propose a compact pyroelectric detector based on a bioriented poled polyvinylidene difluoride film coated with sputtered metal electrodes for in situ absorption measurement at cryogenic temperature. The detector design was optimized for the registration system of the electron paramagnetic resonance (EPR) endstation of the Novosibirsk Free Electron Laser facility. Measurements of the detector response to pulsed THz radiation at different temperatures and electrode materials showed that the response varies with both the temperature and the type of electrode material used. The maximum signal level corresponds to the temperature range of 10-40 K, in which the pyroelectric coefficient of the PVDF film also has a maximum value. Among the three coatings studied, namely indium tin oxide (ITO), Au, and Cu/Ni, the latter has the highest increase in sensitivity at low temperature. The possibility of using the detectors for in situ absorption measurement was exemplified using two typical molecular spin systems, which exhibited a transparency of 20-30% at 76.9 cm-1 and 5 K. Such measurements, carried out directly in the cryostat with the main recording system and sample fully configured, allow precise control of the THz radiation parameters at the EPR endstation.

2.
J Hazard Mater ; 478: 135520, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159578

RESUMEN

The reduction of hazardous nitric oxide emissions remains a significant ecological challenge. Despite the variety of possibilities, sorbents able to capture low concentrations of NO from flue gas with high selectivity are still in demand. In this work a new type of mesoporous xerogel material highly loaded with ultrastable Blatter radicals (BTR, >60 % by mass) that act as selective NO sorption sites is developed. Electron Paramagnetic Resonance (EPR) spectroscopy evidences reversible NO sorption in nanometer-scale pores of BTR-based xerogels and indicates the high NO capacity of such radical-rich sorbent. Efficient NO capture from model flue gas mixture is also evidenced in experiments with a fixed bed reactor. Such advanced properties of new materials as selectivity, strong binding with NO and an ability for mild regeneration via thermodesorption promote them for future ecological applications.

3.
J Phys Chem B ; 128(29): 7237-7253, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39016740

RESUMEN

In order to obtain a long-lived charge separation (CS) state in compact electron donor-acceptor molecular systems, we prepared a series of naphthalenediimide (NDI)-phenothiazine (PTZ) triads, with phenylene as the linker between the donor and acceptor. Conformation restriction is imposed to control the mutual orientation of the NDI and PTZ units by attaching methyl groups on the phenylene linker to tune the electronic coupling between the donor and the acceptor. Moreover, the PTZ moiety was oxidized to sulfoxide to tune the ordering of the CS state and the 3LE state (LE: locally excited state). UV-vis absorption spectra indicate electronic coupling between NDI with the phenylene linker as well as the PTZ units, manifested by the appearance of a charge-transfer (CT) absorption band, whereas this coupling is devoid in the triads with conformation restriction imposed. Fluorescence is strongly quenched in the triads compared to the reference compound, indicating electron transfer upon photoexcitation. Femtosecond transient absorption spectra indicate that the CS takes 0.8 ps, and then the 3LE state is formed by charge recombination in 83 ps. Nanosecond transient absorption (ns-TA) spectra show that the 3NDI state was observed in nonpolar solvents such as cyclohexane (triplet state lifetime: 95.7 µs), whereas the CS state was observed in more polar solvents. The CS state lifetimes are up to 1.2 µs (in toluene). Time-resolved electron paramagnetic resonance spectra of the triads in toluene consist of two types of signals: CS states (narrower signals, ∼10 mT) and 3LE states (broader signals, ∼50 to 200 mT). In the spectra of the triads containing PTZ, the CS state signals dominate, whereas for the triads containing oxidized PTZ, the 3NDI signals (zero-field splitting D ≈ 2000 MHz) prevail, both observations being in agreement with the ns-TA spectral studies. The electron spin polarization phase pattern of the 3NDI states of the triads indicates that the intersystem crossing (ISC) mechanism is spin-orbit charge-transfer ISC. Considering the 3CS state as ion pairs, the electron-exchange energy (J) is determined to be -39 to -59 MHz, and the electron spin dipolar interaction is 83-92 MHz.

4.
J Chem Phys ; 160(22)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38856059

RESUMEN

The development and technological applications of molecular spin systems require versatile experimental techniques to characterize and control their static and dynamic magnetic properties. In the latter case, bulk spectroscopic and magnetometric techniques, such as AC magnetometry and pulsed electron paramagnetic resonance, are usually employed, showing high sensitivity, wide dynamic range, and flexibility. They are based on creating a nonequilibrium state either by changing the magnetic field or by applying resonant microwave radiation. Another possible source of perturbation is a laser pulse that rapidly heats the sample. This approach has proven to be one of the most useful techniques for studying the kinetics and mechanism of chemical and biochemical reactions. Inspired by these works, we propose an inductive detection of temperature-induced magnetization dynamics as applied to the study of molecular spin systems and describe the general design and construction of a particular induction probehead, taking into account the constraints imposed by the cryostat and electromagnet. To evaluate the performance, several coordination compounds of VO2+, Co2+, and Dy3+ were investigated using low-energy pulses of a terahertz free electron laser of the Novosibirsk free electron laser facility as a heat source. All measured magnetization dynamics were qualitatively or quantitatively described using a proposed basic theoretical model and compared with the data obtained by alternating current magnetometry. Based on the results of the research, the possible scope of applications of inductive detection and its advantages and disadvantages in comparison with standard methods are discussed.

5.
J Am Chem Soc ; 146(19): 13666-13675, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38709144

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼125 °C in an inert atmosphere; in a toluene solution upon prolonged heating at 90 °C in air, no decomposition was observed. The resulting unique verdazyl-nitroxide conjugate was thoroughly studied using a range of experimental and theoretical techniques, such as SQUID magnetometry of polycrystalline powders, EPR spectroscopy in various matrices, cyclic voltammetry, and high-level quantum chemical calculations. All collected data confirm the high thermal stability of the resulting tetraradical and quintet multiplicity of its ground state, which makes the synthesis of this important paramagnet a new milestone in the field of creating high-spin systems.

6.
Chem Sci ; 15(14): 5268-5276, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38577353

RESUMEN

Metal-organic frameworks (MOFs) draw increasing attention as nanoenvironments for chemical reactions, especially in the field of catalysis. Knowing the specifics of MOF cavities is decisive in many of these cases; yet, obtaining them in situ remains very challenging. We report the first direct assessment of the apparent polarity and solvent organization inside MOF cavities using a dedicated structurally flexible spin probe. A stable ß-phosphorylated nitroxide radical was incorporated into the cavities of a prospective MOF ZIF-8 in trace amounts. The spectroscopic properties of this probe depend on local polarity, structuredness, stiffness and cohesive pressure and can be precisely monitored by Electron Paramagnetic Resonance (EPR) spectroscopy. Using this approach, we have demonstrated experimentally that the cavities of bare ZIF-8 are sensed by guest molecules as highly non-polar inside. When various alcohols fill the cavities, remarkable self-organization of solvent molecules is observed leading to a higher apparent polarity in MOFs compared to the corresponding bulk alcohols. Accounting for such nanoorganization phenomena can be crucial for optimization of chemical reactions in MOFs, and the proposed methodology provides unique routes to study MOF cavities inside in situ, thus aiding in their various applications.

7.
RSC Adv ; 14(9): 6178-6189, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38375011

RESUMEN

Understanding and controlling spin dynamics in organic dyes is of significant scientific and technological interest. The investigation of 2,5-dihydropyrrolo[4,3-c]pyrrolo-1,4-dione derivatives (DPPs), one of the most widely used dyes in many fields, has so far been limited to closed-shell molecules. We present a comprehensive joint experimental and computational study of DPP derivatives covalently linked to two nitronyl nitroxide radicals (DPPTh-NN2). Synthesis, single crystal X-ray diffraction study, photophysical properties, magnetic properties established using steady-state and pulse EPR, fast spin dynamics, and computational modelling using density functional theory and ab initio methods of electronic structure and spectroscopic properties of DPPTh-NN2 are presented. The single-crystal X-ray diffraction analysis of DPPTh-NN2 and computational modeling of its electronic structure suggest that effective conjugation along the backbone leads to noticeable spin-polarization transfer. Calculations using ab initio methods predict a weak exchange interaction of radical centers through a singlet ground state of DPPTh with a small singlet-triplet splitting (ΔEST) of about 25 cm-1 (∼0.07 kcal mol-1). In turn, a strong ferromagnetic exchange interaction between the triplet state of DPPTh chromophore and nitronyl nitroxides (with J ∼ 250 cm-1) was predicted.

8.
Chemistry ; 30(8): e202303456, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37988241

RESUMEN

High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis. The tetraradical possesses good thermal stability with decomposition onset at ∼150 °C under an inert atmosphere and exhibits reversible redox waves at -0.54 and 0.45 V versus Ag/AgCl. The magnetic properties of the tetraradical were characterized by SQUID magnetometry of polycrystalline powders and EPR spectroscopy in various matrices. The collected data, analyzed by using high-level quantum chemical calculations, confirmed that the tetraradical has a triplet ground state and a nearby excited quintet state. The unique high stability of the prepared triazinyl-nitronylnitroxide tetraradical is a new milestone in the field of creating high-spin systems.

9.
Molecules ; 28(22)2023 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-38005383

RESUMEN

A simple and highly effective methodology for the cross-coupling of heteroaryl iodides with NN-AuPPh3 at room temperature is reported. The protocol is based on a novel catalytic system consisting of Pd2(dba)3·CHCl3 and the phosphine ligand MeCgPPh having an adamantane-like framework. The present protocol was found to be well compatible with various heteroaryl iodides, thus opening new horizons in directed synthesis of functionalized nitronyl nitroxides and high-spin molecules.

10.
Polymers (Basel) ; 15(20)2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37896368

RESUMEN

The development of efficient and reliable sensors operating at room temperature is essential to advance the application of terahertz (THz) science and technology. Pyroelectric THz detectors are among the best candidates, taking into account their variety, outstanding performance, ease of fabrication, and robustness. In this work, we compare the performance of six different detectors, based on either LaTiO3 crystal or different polymeric films, using monochromatic radiation of the Novosibirsk Free Electron Laser facility (NovoFEL) in the frequency range of 0.9-2.0 THz. The main characteristics, including noise equivalent power and frequency response, were determined for all of them. Possible reasons for the differences in the obtained characteristics are discussed on the basis of the main physicochemical characteristics and optical properties of the sensitive area. At least three detectors showed sufficient sensitivity to monitor the shape and duration of the THz macropulses utilizing only a small fraction of the THz radiation from the primary beam. This capability is crucial for accurate characterization of THz radiation during the main experiment at various specialized endstations at synchrotrons and free electron lasers. As an example of such characterization, the typical stability of the average NovoFEL radiation power at the beamline of the electron paramagnetic resonance endstation was investigated.

11.
Nanomaterials (Basel) ; 13(15)2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37570482

RESUMEN

Ionic liquids (ILs) form a variety of nanostructures due to their amphiphilic nature. Recently, unusual structural phenomena have been found in glassy ILs near their glass transition temperatures; however, in all studied cases, IL cations and anions were in the form of separate moieties. In this work, we investigate for the first time such structural anomalies in zwitterionic IL glasses (ZILs), where the cation and anion are bound in a single molecule. Such binding reasonably restricts mutual diffusion of cations and anions, leading to modification of nano-ordering and character of structural anomalies in these glassy nanomaterials, as has been investigated using Electron Paramagnetic Resonance (EPR) spectroscopy. In particular, the occurrence of structural anomalies in ZIL glasses was revealed, and their characteristic temperatures were found to be higher compared to common ILs of a similar structure. Altogether, this work broadens the scope of structural anomalies in ionic liquid glasses and indicates new routes to tune their properties.

12.
Chemistry ; 29(61): e202302137, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37553294

RESUMEN

Bodipy (BDP)-perylenebisimide (PBI) donor-acceptor dyads/triad were prepared to study the spin-orbit charge-transfer intersystem crossing (SOCT-ISC). For BDP-PBI-3, in which BDP was attached at the imide position of PBI, higher singlet oxygen quantum yield (ΦΔ =85 %) was observed than the bay-substituted derivative BDP-PBI-1 (ΦΔ =30 %). Femtosecond transient absorption spectra indicate slow Förster resonance energy transfer (FRET; 40.4 ps) and charge separation (CS; 1.55 ns) in BDP-PBI-3, while for BDP-PBI-1, CS takes 2.8 ps. For triad BDP-PBI-2, ultrafast FRET (149 fs) and CS (4.7 ps) process were observed, the subsequent charge recombination (CR) takes 5.8 ns and long-lived 3 PBI* (179.8 µs) state is populated. Nanosecond transient absorption spectra of BDP-PBI-3 show that the CR gives upper triplet excited state (3 BDP*) and subsequently, via a slow intramolecular triplet energy transfer (14.5 µs), the 3 PBI* state is finally populated, indicating that upper triplet state is involved in SOCT-ISC. Time-resolved electron paramagnetic resonance spectroscopy revealed that both radical pair ISC (RP ISC) and SOCT-ISC contribute to the ISC. A rare electron spin polarization of (e, e, e, e, e, e) was observed for the triplet state formed via the RP ISC mechanism, due to the S-T+1 /T0 states mixing.

13.
Phys Chem Chem Phys ; 25(33): 22455-22466, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37581249

RESUMEN

The binding of G-quadruplex structures (G4s) with photosensitizers is of considerable importance in medicinal chemistry and drug discovery due to their promising potential in photodynamic therapy applications. G4s can experience structural changes as a result of ligand interactions and light exposure. Understanding these modifications is essential to uncover the fundamental biological roles of the complexes and optimize their therapeutic potential. The structural diversity of G4s makes it challenging to study their complexes with ligands, necessitating the use of various complementary methods to fully understand these interactions. In this study, we introduce, for the first time, the application of laser-induced dipolar EPR as a method to characterize G-quadruplex DNA complexes containing photosensitizers and to investigate light-induced structural modifications in these systems. To demonstrate the feasibility of this approach, we studied complexes of the human telomeric G-quadruplex (HTel-22) with cationic 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin tetra(p-toluenesulfonate) (TMPyP4). In addition to showcasing a new methodology, we also aimed to provide insights into the mechanisms underlying photoinduced HTel-22/TMPyP4 structural changes, thereby aiding in the advancement of approaches targeting G4s in photodynamic therapy. EPR revealed G-quadruplex unfolding and dimer formation upon light exposure. Our findings demonstrate the potential of EPR spectroscopy for examining G4 complexes with photosensitizers and contribute to a better understanding of G4s' interactions with ligands under light.


Asunto(s)
G-Cuádruplex , Porfirinas , Humanos , Fármacos Fotosensibilizantes , Ligandos , Porfirinas/química , ADN/química
14.
Dalton Trans ; 52(27): 9337-9345, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37350573

RESUMEN

Copper(II)-nitroxide based Cu(hfac)2LR compounds exhibit unusual magnetic behavior that can be induced by various stimuli. In many aspects, the magnetic phenomena observed in Cu(hfac)2LR are similar to classical spin-crossover behavior. However, these phenomena originate from polynuclear exchange-coupled spin clusters Cu2+-O˙-N< or >N-˙O-Cu2+-O˙-N<. Such peculiarities may result in additional multifunctionality of Cu(hfac)2LR compounds, making them promising materials for spintronic applications. Herein, we investigate the Cu(hfac)2LMeMe material, which demonstrates a three-step temperature-induced magnetostructural transition between high-temperature, low-temperature, and intermediate states, as revealed by magnetometry. Two main steps were resolved using variable-temperature Fourier-transform infrared and Q-band electron paramagnetic resonance (EPR) spectroscopies. The intermediate-temperature states (∼40-90 K) are characterized by the coexistence of two types of copper(II)-nitroxide clusters, corresponding to the low-temperature and high-temperature phases. High-field EPR experiments revealed the effect of partial alignment of Cu(hfac)2LMeMe microcrystals in a strong (>20 T) magnetic field. This effect was used to unveil the structural features of the low-temperature phase of Cu(hfac)2LMeMe, which were inaccessible using single-crystal X-ray diffraction (XRD) technique. In particular, high-field EPR allowed us to determine the relative direction of the Jahn-Teller axes in CuO6 and CuO4N2 units.

15.
Phys Chem Chem Phys ; 25(20): 13846-13853, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37161549

RESUMEN

Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.

16.
Phys Chem Chem Phys ; 25(17): 11971-11980, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070235

RESUMEN

Photo-excited triplet states represent a new class of spin labels in pulse electron paramagnetic resonance (EPR), attracting increasing attention because of their unique spectroscopic properties. Despite certain advantages, the use of photo-labels has also some challenges, e.g. low repetition rates due to technical laser-related limitations and intrinsic properties of the labels. The application of additional pulse trains for multiple refocusing of the electron spin echo and integration of all observed echoes can significantly enhance sensitivity at a given repetition rate. In this work, we demonstrate that the use of Carr-Parcel-Meiboom-Gill (CPMG) blocks followed by multiple echo integration is a promising route for sensitivity gain in pulsed EPR utilizing photo-excited triplet states, including light-induced pulsed dipolar spectroscopy (LiPDS). The reduction of accumulation time by a factor of 5.3 has been achieved using a commercial pulsed EPR spectrometer with the implementation of a CPMG block and an external digitizer. The methodology of using CPMG refocusing with multiple echo integration in light-induced pulsed EPR experiments is discussed, aiding future applications of this approach in LiPDS experiments.

17.
Dalton Trans ; 52(14): 4526-4536, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36920418

RESUMEN

Cobalt-containing materials are of interest for a wide range of applications, from biomaterials to solid-state lasers in optics. For instance, Co2+ is known to trigger the formation of new blood vessels, i.e. angiogenesis. Here, the use of phosphate glasses as a vehicle for local release of Co2+ ions is an attractive strategy to overcome the vascularisation limitation in tissue engineering. This study aimed to establish structure-property correlations as a function of the coordination environment of cobalt in 45P2O5-(30 - x)CaO-25Na2O-xCoO (x: 0.01 to 10 mol%) glasses. Constant polymerization and O/P ratio, resulting ultimately in constant basicity, were shown by ICP-OES and Raman spectroscopy. The latter, combined with EPR analysis, indicated that Co2+ was the predominant oxidation state and the presence of Co3+ can be excluded. UV-vis-NIR absorption spectra showed that the ratio between Co2+ in four- and six-fold coordination remained constant throughout the glass series. Their thermal properties measured by DSC and heating microscopy did not change much in the substitution range studied here. The steady trend in Tg values suggests a compensation between two opposite effects caused by the presence of four and six-fold coordinated Co2+, both being present at a constant ratio throughout the glasses. Accordingly, the higher field strength of Co2+ compared to that of Ca2+ is expected to strengthen the glass network. In contrast, four-fold coordinated cobalt is expected to weaken the network by connecting fewer fragments of the phosphate glass network than six-fold coordinated cobalt. These results indicate that the structural properties of the glasses with constant basicity are influenced by the coordination number of Co2+.

18.
ACS Appl Mater Interfaces ; 15(4): 5191-5197, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652301

RESUMEN

Nitrogen oxides are adverse poisonous gases present in the atmosphere and having detrimental effects on the human health and environment. In this work, we propose a new type of mesoporous materials capable of capturing nitrogen monoxide (NO) from air. The designed material combines the robust Santa Barbara Amorphous-15 silica scaffold and ultrastable Blatter-type radicals acting as NO traps. Using in situ electron paramagnetic resonance spectroscopy, we demonstrate that NO capture from air is selective and reversible at practical conditions, thus making Blatter radical-decorated silica highly promising for environmental applications.

19.
Chemistry ; 29(11): e202203498, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36416222

RESUMEN

Sterically encumbered bis(m-terphenyl)chalcogenides, (2,6-Mes2 C6 H3 )2 E (E=S, Se, Te) were obtained by the reaction of the chalcogen tetrafluorides, EF4 , with three equivalents of m-terphenyl lithium, 2,6-Mes2 C6 H3 Li. The single-electron oxidation of (2,6-Mes2 C6 H3 )2 Te using XeF2 /K[B(C6 F5 )4 ] afforded the radical cation [(2,6-Mes2 C6 H3 )2 Te][B(C6 F5 )4 ] that was isolated and fully characterized. The electrochemical oxidation of the lighter homologs (2,6-Mes2 C6 H3 )2 E (E=S, Se) was irreversible and impaired by rapid decomposition.

20.
Chem Sci ; 13(45): 13426-13441, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36507154

RESUMEN

Spiro rhodamine (Rho)-naphthalenediimide (NDI) electron donor-acceptor orthogonal dyads were prepared to generate a long-lived charge separation (CS) state based on the electron spin control approach, i.e. to form the 3CS state, not the 1CS state, to prolong the CS state lifetime by the electron spin forbidden feature of the charge recombination process of 3CS → S0. The electron donor Rho (lactam form) is attached via three σ bonds, including two C-C and one N-N bonds (Rho-NDI), or an intervening phenylene, to the electron acceptor NDI (Rho-Ph-NDI and Rho-PhMe-NDI). Transient absorption (TA) spectra show that fast intersystem crossing (ISC) (<120 fs) occurred to generate an upper triplet state localized on the NDI moiety (3NDI*), and then to form the CS state. For Rho-NDI in both non-polar and polar solvents, a long-lived 3CS state (lifetime τ = 0.13 µs) and charge separation quantum yield (Φ CS) up to 25% were observed, whereas for Rho-Ph-NDI (τ T = 1.1 µs) and Rho-PhMe-NDI (τ T = 2.0 µs), a low-lying 3NDI* state was formed by charge recombination (CR) in n-hexane (HEX). In toluene (TOL), however, CS states were observed for Rho-Ph-NDI (0.37 µs) and Rho-PhMe-NDI (0.63 µs). With electron paramagnetic resonance (EPR) spectra, weak electronic coupling between the Rho and NDI moieties for Rho-NDI was proved. Time-resolved EPR (TREPR) spectra detected two transient species including NDI-localized triplets (formed via SOC-ISC) and a 3CS state. The CS state of Rho-NDI features the largest dipolar interaction (|D| = 184 MHz) compared to Rho-Ph-NDI (|D| = 39 MHz) and Rho-PhMe-NDI (|D| = 41 MHz) due to the smallest distance between Rho and NDI moieties. For Rho-NDI, the time-dependent e,a → a,e phase change of the CS state TREPR spectrum indicates that the long-lived CS state is based on the electron spin control effect.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA