Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 6000, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397639

RESUMEN

The transient receptor potential melastatin 4 (TRPM4) channel contributes to disease severity in the murine experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis and to neuronal cell death in models of excitotoxicity and traumatic brain injury. As TRPM4 is activated by intracellular calcium and conducts monovalent cations, we hypothesized that TRPM4 may contribute to and boost excitatory synaptic transmission in CA1 pyramidal neurons of the hippocampus. Using single-spine calcium imaging and electrophysiology, we found no effect of the TRPM4 antagonists 9-phenanthrol and glibenclamide on synaptic transmission in hippocampal slices from healthy mice. In contrast, glibenclamide but not 9-phenanthrol reduced excitatory synaptic potentials in slices from EAE mice, an effect that was absent in slices from EAE mice lacking TRPM4. We conclude that TRPM4 plays little role in basal hippocampal synaptic transmission, but a glibenclamide-sensitive TRPM4-mediated contribution to excitatory postsynaptic responses is upregulated at the acute phase of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Canales Catiónicos TRPM , Animales , Calcio/metabolismo , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/metabolismo , Potenciales Postsinápticos Excitadores , Gliburida/metabolismo , Gliburida/farmacología , Hipocampo/metabolismo , Ratones , Transmisión Sináptica/fisiología , Canales Catiónicos TRPM/metabolismo
2.
Nat Commun ; 11(1): 2464, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32424147

RESUMEN

Information within the brain travels from neuron to neuron across billions of synapses. At any given moment, only a small subset of neurons and synapses are active, but finding the active synapses in brain tissue has been a technical challenge. Here we introduce SynTagMA to tag active synapses in a user-defined time window. Upon 395-405 nm illumination, this genetically encoded marker of activity converts from green to red fluorescence if, and only if, it is bound to calcium. Targeted to presynaptic terminals, preSynTagMA allows discrimination between active and silent axons. Targeted to excitatory postsynapses, postSynTagMA creates a snapshot of synapses active just before photoconversion. To analyze large datasets, we show how to identify and track the fluorescence of thousands of individual synapses in an automated fashion. Together, these tools provide an efficient method for repeatedly mapping active neurons and synapses in cell culture, slice preparations, and in vivo during behavior.


Asunto(s)
Imagenología Tridimensional , Sinapsis/fisiología , Potenciales de Acción , Animales , Axones/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Femenino , Fluorescencia , Hipocampo/citología , Luz , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Terminales Presinápticos/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Sinaptofisina/metabolismo , Factores de Tiempo
3.
Nat Commun ; 9(1): 4440, 2018 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-30361563

RESUMEN

Marking functionally distinct neuronal ensembles with high spatiotemporal resolution is a key challenge in systems neuroscience. We recently introduced CaMPARI, an engineered fluorescent protein whose green-to-red photoconversion depends on simultaneous light exposure and elevated calcium, which enabled marking active neuronal populations with single-cell and subsecond resolution. However, CaMPARI (CaMPARI1) has several drawbacks, including background photoconversion in low calcium, slow kinetics and reduced fluorescence after chemical fixation. In this work, we develop CaMPARI2, an improved sensor with brighter green and red fluorescence, faster calcium unbinding kinetics and decreased photoconversion in low calcium conditions. We demonstrate the improved performance of CaMPARI2 in mammalian neurons and in vivo in larval zebrafish brain and mouse visual cortex. Additionally, we herein develop an immunohistochemical detection method for specific labeling of the photoconverted red form of CaMPARI. The anti-CaMPARI-red antibody provides strong labeling that is selective for photoconverted CaMPARI in activated neurons in rodent brain tissue.


Asunto(s)
Neuronas/metabolismo , Ingeniería de Proteínas/métodos , Animales , Anticuerpos/metabolismo , Fluorescencia , Células HeLa , Humanos , Luz , Proteínas Luminiscentes/metabolismo , Ratones , Neuronas/citología , Ratas Wistar , Corteza Visual/metabolismo , Pez Cebra/metabolismo
5.
PLoS One ; 10(11): e0142012, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26600250

RESUMEN

Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity.


Asunto(s)
Hipocampo/patología , Hipocampo/fisiopatología , Memoria , Plasticidad Neuronal , Receptores de Mineralocorticoides/metabolismo , Estrés Psicológico/complicaciones , Estrés Psicológico/fisiopatología , Animales , Conducta Animal , Condicionamiento Clásico , Miedo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis , Sistemas Neurosecretores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA