Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Manage ; 64(5): 626-639, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31583444

RESUMEN

Agricultural emissions are the primary source of ammonia (NH3) deposition in Rocky Mountain National Park (RMNP), a Class I area, that is granted special air quality protections under the Clean Air Act. Between 2014 and 2016, the pilot phase of the Colorado agricultural nitrogen early warning system (CANEWS) was developed for agricultural producers to voluntarily and temporarily minimize emissions of NH3 during periods of upslope winds. The CANEWS was created using trajectory analyses driven by outputs from an ensemble of numerical weather forecasts together with the climatological expertize of human forecasters. Here, we discuss the methods for the CANEWS and offer preliminary analyses of 33 months of the CANEWS based on atmospheric deposition data from two sites in RMNP as well as responses from agricultural producers after warnings were issued. Results showed that the CANEWS accurately predicted 6 of 9 high N deposition weeks at a lower-elevation observation site, but only 4 of 11 high N deposition weeks at a higher-elevation site. Sixty agricultural producers from 39 of Colorado's agricultural operations volunteered for the CANEWS, and a two-way line of communication between agricultural producers and scientists was formed. For each warning issued, an average of 23 producers responded to a postwarning survey. Over 75% of responding CANEWS participants altered their practices after an alert. While the current effort was insufficient to reduce atmospheric deposition, we were encouraged by the collaborative spirit between agricultural, scientific, and resource management communities. Solving a broad and complex social-ecological problem requires both a technological approach, such as the CANEWS, and collaboration and trust from all participants, including agricultural producers, land managers, university researchers, and environmental agencies.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Agricultura , Colorado , Monitoreo del Ambiente , Humanos , Nitrógeno , Parques Recreativos
2.
J Air Waste Manag Assoc ; 63(1): 70-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23447865

RESUMEN

UNLABELLED: Almond harvest accounts for an estimated 12 Gg of PM10 emissions in California each harvest season. Emissions from three new, "low-dust" almond harvesters (Exact Harvest Systems E4000; Flory Industries 8550; Weiss-McNair 9800 California Special) and one exhaust abatement device (Joe DiAnna, Clean Air Concept) were compared to those from a conventional harvester operating in the same orchard. Emissions of TSP and PM10 trended lower for all new harvesters and were significantly lower for most harvesters (alpha < 0.10). Significant reductions in PM2.5 emissions were observed from two harvesters as well. Fractionation analysis was not conducted on nut samples collected in the second year of the project, but differences observed in the composition of material that would be delivered to the huller between the Exact E4000 and conventional harvesters were functionally insignificant. The results of these tests imply that new harvest technologies are able to reduce PM10 emissions from one of the largest sources in the San Joaquin Valley (SJV) of California without affecting product quality. As such, use of these new harvesters should be considered a conservation measure that would help the SJV Air Pollution Control District (SJVAPCD) meet the requirements of their PM10 maintenance plan. IMPLICATIONS: The results of this research indicate that new harvesting technologies have the potential to substantially reduce PM emissions from almond harvest operations over traditional harvester designs without negatively affecting product quality. As such, use of these new harvesters could aid the SJVAPCD in maintaining its attainment status for PM10 and should be considered as candidate conservation management practices for producers.


Asunto(s)
Agricultura/instrumentación , Contaminación del Aire/prevención & control , Material Particulado/análisis , Prunus , Conservación de los Recursos Naturales , Emisiones de Vehículos/análisis
3.
J Air Waste Manag Assoc ; 61(7): 786-95, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21850834

RESUMEN

Greenhouse gas (GHG) emissions from agricultural production operations are recognized as an important air quality issue. A new technique following the U.S. Environmental Protection Agency Method TO-14A was used to measure GHG emissions from ground-level area sources (GLAS) in a free-stall dairy operation in central Texas. The objective of this study was to quantify and report GHG emission rates (ERs) from the dairy during the summer and winter using this protocol. A weeklong sampling was performed during each season. A total of 75 and 66 chromatograms of air samples were acquired from six delineated GLAS (loafing pen, walkway, barn, silage pile, settling basin, and lagoon) of the same dairy during summer and winter, respectively. Three primary GHGs--methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O)--were identified from the dairy operation during the sampling periods. The estimated overall ERs for CH4, CO2, and N2O during the summer for this dairy were 274, 6005, and 7.96 g head(-1)day(-1), respectively. During the winter, the estimated overall CH4, CO2, and N2O ERs were 52, 7471, and 3.59 g head(-1)day(-1), respectively. The overall CH4 and N2O ERs during the summer were approximately 5.3 and 2.2 times higher than those in the winter for the free-stall dairy. These seasonal variations were likely due to fluctuations in ambient temperature, dairy manure loading rates, and manure microbial activity of GLAS. The annualized ERs for CH4, CO2, and N2O for this dairy were estimated to be 181, 6612, and 6.13 g head(-1)day(-1), respectively. Total GHG emissions calculated for this dairy with 500 cows were 2250 t of carbon dioxide equivalent (CO2e) per year.


Asunto(s)
Contaminantes Atmosféricos/química , Industria Lechera , Monitoreo del Ambiente , Efecto Invernadero , Estaciones del Año , Animales , Bovinos , Texas
4.
J Air Waste Manag Assoc ; 61(4): 409-17, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21516936

RESUMEN

Almond harvest accounts for substantial PM10 (particulate matter [PM] < or =10 microm in nominal aerodynamic diameter) emissions in California each harvest season. This paper evaluates the effects of using reduced-pass sweepers and lower harvester separation fan speeds (930 rpm) on lowering PM emissions from almond harvesting operations. In-canopy measurements of PM concentrations were collected along with PM concentration measurements at the orchard boundary; these were used in conjunction with on-site meteorological data and inverse dispersion modeling to back-calculate emission rates from the measured concentrations. The harvester discharge plume was measured as a function of visible plume opacity during conditioning operations. Reduced-pass sweeping showed the potential for reducing PM emissions, but results were confounded because of differences in orchard maturity and irrigation methods. Fuel consumption and sweeping time per unit area were reduced when comparing a reduced-pass sweeper to a conventional sweeper. Reducing the separation fan speed from 1080 to 930 rpm led to reductions in PM emissions. In general, foreign matter levels within harvested product were nominally affected by separation fan speed in the south (less mature) orchard; however, in samples conditioned using the lower fan speed from the north (more mature) orchard, these levels were unacceptable.


Asunto(s)
Agricultura , Contaminación del Aire/prevención & control , Material Particulado , Prunus , Algoritmos , California , Monitoreo del Ambiente , Tamaño de la Partícula
5.
J Air Waste Manag Assoc ; 59(8): 943-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19728488

RESUMEN

Almond harvest accounts for substantial particulate matter less than 10 microm in aerodynamic diameter (PM10) emissions in California each harvest season. This paper addresses the reduction of harvester ground speed from a standard 8 km/hr (5 mph) to 4 km/hr (2.5 mph) as a possible mitigation measure for reducing PM10 emissions. Ambient total suspended particulate (TSP) and PM10 sampling was conducted during harvest with alternating control (8 km/hr [5 mph]) and experimental (4 km/hr [2.5 mph]) treatments. On-site meteorological data were used in conjunction with both Industrial Source Complex-Short Term version 3 (ISCST3) and the American Meteorological Society/U.S. Environmental Protection Agency Regulatory Model (AERMOD) dispersion models to back-calculate emission rates from the measured concentrations. Baseline annual emission factors for nut pickup of 381 +/- 122 and 361 +/- 123 kg PM10/km2 x yr were determined using ISCST3 and AERMOD, respectively. Both of these values are substantially lower than the current PMIo emission factor for almond pickup of 4120 kg PM10/ km2 x yr. The particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) emission factors for nut pickup developed from this study were 25 +/- 8 kg PM2.5/km2 x yr and 24 +/- 8 kg PM10/km2 x yr were determined using ISCST3 and AERMOD, respectively. Reducing harvester speed resulted in an emissions reduction of 42% for TSP, but no differences were detected in emissions of PM10 and PM2.5. Differences detected in the emission factors developed using ISCST3 and AERMOD were not statistically significant, indicating that almond harvest emission factors previously developed using ISCST3 may be applied appropriately in AERMOD.


Asunto(s)
Contaminación del Aire/análisis , Material Particulado/análisis , Prunus , Agricultura , Contaminación del Aire/prevención & control , California , Monitoreo del Ambiente , Modelos Teóricos , Tamaño de la Partícula , Material Particulado/química
6.
J Air Waste Manag Assoc ; 58(10): 1288-96, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18939775

RESUMEN

As of December 2006, the American Meteorological Society/U.S. Environmental Protection Agency (EPA) Regulatory Model with Plume Rise Model Enhancements (AERMOD-PRIME; hereafter AERMOD) replaced the Industrial Source Complex Short Term Version 3 (ISCST3) as the EPA-preferred regulatory model. The change from ISCST3 to AERMOD will affect Prevention of Significant Deterioration (PSD) increment consumption as well as permit compliance in states where regulatory agencies limit property line concentrations using modeling analysis. Because of differences in model formulation and the treatment of terrain features, one cannot predict a priori whether ISCST3 or AERMOD will predict higher or lower pollutant concentrations downwind of a source. The objectives of this paper were to determine the sensitivity of AERMOD to various inputs and compare the highest downwind concentrations from a ground-level area source (GLAS) predicted by AERMOD to those predicted by ISCST3. Concentrations predicted using ISCST3 were sensitive to changes in wind speed, temperature, solar radiation (as it affects stability class), and mixing heights below 160 m. Surface roughness also affected downwind concentrations predicted by ISCST3. AERMOD was sensitive to changes in albedo, surface roughness, wind speed, temperature, and cloud cover. Bowen ratio did not affect the results from AERMOD. These results demonstrate AERMOD's sensitivity to small changes in wind speed and surface roughness. When AERMOD is used to determine property line concentrations, small changes in these variables may affect the distance within which concentration limits are exceeded by several hundred meters.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Algoritmos , Modelos Estadísticos , Energía Solar , Temperatura , Tiempo (Meteorología) , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA