Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201339

RESUMEN

In polymicrobial sepsis, the extracellular histones, mainly released from activated neutrophils, significantly contribute to cardiac dysfunction (septic cardiomyopathy), as demonstrated in our previous studies using Echo-Doppler measurements. This study aims to elucidate the roles of extracellular histones and their interactions with Toll-like receptors (TLRs) in cardiac dysfunction. Through ex vivo assessments of ECG, left ventricle (LV) function parameters, and in vivo Echo-Doppler studies in mice perfused with extracellular histones, we aim to provide comprehensive insights into the mechanisms underlying sepsis-induced cardiac dysfunction. Langendorff-perfused hearts from both wild-type and TLR2, TLR3, or TLR4 knockout (KO) mice were examined. Paced mouse hearts were perfused with histones to assess contractility and relaxation. Echo-Doppler studies evaluated cardiac dysfunction after intravenous histone injection. Histone perfusion caused defects in contractility and relaxation, with TLR2 and TLR3 KO mice being partially protected. Specifically, TLR2 KO mice exhibited the greatest reduction in Echo-Doppler abnormalities, while TLR4 KO exacerbated cardiac dysfunction. Among individual histones, H1 induced the most pronounced abnormalities in cardiac function, apoptosis of cardiomyocytes, and LDH release. Our data highlight significant interactions between histones and TLRs, providing insights into histones especially H1 as potential therapeutic targets for septic cardiomyopathy. Further studies are needed to explore specific histone-TLR interactions and their mechanisms.


Asunto(s)
Histonas , Ratones Noqueados , Animales , Histonas/metabolismo , Ratones , Receptores Toll-Like/metabolismo , Masculino , Sepsis/metabolismo , Sepsis/complicaciones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética , Corazón/fisiopatología
2.
Caspian J Intern Med ; 15(3): 392-413, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011445

RESUMEN

Background: One of the complications of multiple sclerosis (MS) is cognitive impairment (CI). The prevalence of CI is reported variously in previous studies. The goal of this systematic review and meta-analysis to estimate pooled prevalence of CI in patients with MS and also the prevalence of CI based on the type of applied test. Methods: Two independent researchers systematically searched PubMed, Scopus, EMBASE, Web of Science, and google scholar as well as gray literature (conference abstracts, references of the references) which were published before up January 2022. Results: We found 4089 articles by literature search, after deleting duplicates 3174 remained. Ninety articles remained for meta-analysis. The pooled prevalence of CI using all types of tests was 41% (95% CI: 38-44%) (I2=91.7%, p<0.001). The pooled prevalence of CI using BRB test was 39% (95%CI: 36-42%) (I2=89%, p<0.001). The pooled prevalence of CI using BICAMS was 44% (95%CI: 37-51%, I2=95.4%, p<0.001). The pooled prevalence of CI using MACFIMS was 44% (95% CI: 36-53%) (I2=89.3%, p<0.001). Conclusions: The pooled prevalence of cognitive impairment in patients with MS is estimated as 41%, so CI it should be considered by clinicians.

3.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L39-L51, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37933452

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is marked by unremitting matrix deposition and architectural distortion. Multiple profibrotic pathways contribute to the persistent activation of mesenchymal cells (MCs) in fibrosis, highlighting the need to identify and target common signaling pathways. The transcription factor nuclear factor of activated T cells 1 (NFAT1) lies downstream of second messenger calcium signaling and has been recently shown to regulate key profibrotic mediator autotaxin (ATX) in lung MCs. Herein, we investigate the role of NFAT1 in regulating fibroproliferative responses during the development of lung fibrosis. Nfat1-/--deficient mice subjected to bleomycin injury demonstrated improved survival and protection from lung fibrosis and collagen deposition as compared with bleomycin-injured wild-type (WT) mice. Chimera mice, generated by reconstituting bone marrow cells from WT or Nfat1-/- mice into irradiated WT mice (WT→WT and Nfat1-/-→WT), demonstrated no difference in bleomycin-induced fibrosis, suggesting immune influx-independent fibroprotection in Nfat1-/- mice. Examination of lung tissue and flow sorted lineageneg/platelet-derived growth factor receptor alpha (PDGFRα)pos MCs demonstrated decreased MC numbers, proliferation [↓ cyclin D1 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation], myofibroblast differentiation [↓ α-smooth muscle actin (α-SMA)], and survival (↓ Birc5) in Nfat1-/- mice. Nfat1 deficiency abrogated ATX expression in response to bleomycin in vivo and MCs derived from Nfat1-/- mice demonstrated decreased ATX expression and migration in vitro. Human IPF MCs demonstrated constitutive NFAT1 activation, and regulation of ATX in these cells by NFAT1 was confirmed using pharmacological and genetic inhibition. Our findings identify NFAT1 as a critical mediator of profibrotic processes, contributing to dysregulated lung remodeling and suggest its targeting in MCs as a potential therapeutic strategy in IPF.NEW & NOTEWORTHY Idiopathic pulmonary fibrosis (IPF) is a fatal disease with hallmarks of fibroblastic foci and exuberant matrix deposition, unknown etiology, and ineffective therapies. Several profibrotic/proinflammatory pathways are implicated in accelerating tissue remodeling toward a honeycombed end-stage disease. NFAT1 is a transcriptional factor activated in IPF tissues. Nfat1-deficient mice subjected to chronic injury are protected against fibrosis independent of immune influxes, with suppression of profibrotic mesenchymal phenotypes including proliferation, differentiation, resistance to apoptosis, and autotaxin-related migration.


Asunto(s)
Fibrosis Pulmonar Idiopática , Pulmón , Animales , Humanos , Ratones , Bleomicina/farmacología , Diferenciación Celular/genética , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal
4.
Environ Res ; 215(Pt 1): 114286, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096170

RESUMEN

Due to the implications of poly- and perfluoroalkyl substances (PFAS) on the environment and public health, great attention has been recently made to finding innovative materials and methods for PFAS removal. In this work, PFAS is considered universal contamination which can be found in many wastewater streams. Conventional materials and processes used to remove and degrade PFAS do not have enough competence to address the issue particularly when it comes to eliminating short-chain PFAS. This is mainly due to the large number of complex parameters that are involved in both material and process designs. Here, we took the advantage of artificial intelligence to introduce a model (XGBoost) in which material and process factors are considered simultaneously. This research applies a machine learning approach using data collected from reported articles to predict the PFAS removal factors. The XGBoost modeling provided accurate adsorption capacity, equilibrium, and removal estimates with the ability to predict the adsorption mechanisms. The performance comparison of adsorbents and the role of AI in one dominant are studied and reviewed for the first time, even though many studies have been carried out to develop PFAS removal through various adsorption methods such as ion exchange, nanofiltration, and activated carbon (AC). The model showed that pH is the most effective parameter to predict PFAS removal. The proposed model in this work can be extended for other micropollutants and can be used as a basic framework for future adsorbent design and process optimization.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Adsorción , Inteligencia Artificial , Carbón Orgánico , Fluorocarburos/análisis , Aprendizaje Automático , Aguas Residuales , Contaminantes Químicos del Agua/análisis
5.
J Immunol ; 208(1): 38-48, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862257

RESUMEN

RNA-binding protein HuR (ELAVL1) is a master regulator of gene expression in human pathophysiology. Its dysregulation plays an important role in many diseases. We hypothesized that HuR plays an important role in Th2 inflammation in asthma in both mouse and human. To address this, we used a model of airway inflammation in a T cell-specific knockout mouse model, distal lck-Cre HuRfl/fl, as well as small molecule inhibitors in human peripheral blood-derived CD4+ T cells. Peripheral CD4+ T cells were isolated from 26 healthy control subjects and 45 asthmatics (36 type 2 high and 9 non-type 2 high, determined by blood eosinophil levels and fraction of exhaled NO). Our mouse data showed conditional ablation of HuR in T cell-abrogated Th2 differentiation, cytokine production, and lung inflammation. Studies using human T cells showed that HuR protein levels in CD4+ T cells were significantly higher in asthmatics compared with healthy control subjects. The expression and secretion of Th2 cytokines were significantly higher in asthmatics compared with control subjects. AMP-activated protein kinase activator treatment reduced the expression of several cytokines in both type 2 high and non-type 2 high asthma groups. However, the effects of CMLD-2 (a HuR-specific inhibitor) were more specific to endotype-defining cytokines in type 2 high asthmatics. Taken together, these data suggest that HuR plays a permissive role in both allergen and non-allergen-driven airway inflammation by regulating key genes, and that interfering with its function may be a novel method of asthma treatment.


Asunto(s)
Asma/metabolismo , Proteína 1 Similar a ELAV/metabolismo , Células Th2/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alérgenos/inmunología , Animales , Antiinflamatorios/farmacología , Asma/genética , Asma/terapia , Benzopiranos/farmacología , Células Cultivadas , Modelos Animales de Enfermedad , Proteína 1 Similar a ELAV/antagonistas & inhibidores , Proteína 1 Similar a ELAV/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Ovalbúmina/inmunología , Pirrolidinas/farmacología , Adulto Joven
6.
Front Allergy ; 2: 676930, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35387061

RESUMEN

Asthma is a heterogenous disease with different inflammatory subgroups that differ in disease severity. This disease variation is hampering treatment and development of new treatment strategies. Macrophages may contribute to asthma phenotypes by their ability to activate in different ways, i.e., T helper cell 1 (Th1)-associated, Th2-associated, or anti-inflammatory activation. It is currently unknown if these different types of activation correspond with specific inflammatory subgroups of asthma. We hypothesized that eosinophilic asthma would be characterized by having Th2-associated macrophages, whereas neutrophilic asthma would have Th1-associated macrophages and both having few anti-inflammatory macrophages. We quantified macrophage subsets in bronchial biopsies of asthma patients using interferon regulatory factor 5 (IRF5)/CD68 for Th1-associated macrophages, CD206/CD68 for Th2-associated macrophages and interleukin 10 (IL10)/CD68 for anti-inflammatory macrophages. Macrophage subset percentages were investigated in subgroups of asthma as defined by unsupervised clustering using neutrophil/eosinophil counts in sputum and tissue and forced expiratory volume in 1 s (FEV1). Asthma patients clustered into four subgroups: mixed-eosinophilic/neutrophilic, paucigranulocytic, neutrophilic with normal FEV1, and neutrophilic with low FEV1, the latter group consisting mainly of smokers. No differences were found for CD206+ macrophages within asthma subgroups. In contrast, IRF5+ macrophages were significantly higher and IL10+ macrophages lower in neutrophilic asthmatics with low FEV1 as compared to those with neutrophilic asthma and normal FEV1 or mixed-eosinophilic asthma. This study shows that neutrophilic asthma with low FEV1 is associated with high numbers of IRF5+, and low numbers of IL10+ macrophages, which may be the result of combined effects of smoking and having asthma.

7.
J Immunol ; 205(1): 251-260, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32444389

RESUMEN

Over the first days of polymicrobial sepsis, there is robust activation of the innate immune system, causing the appearance of proinflammatory cytokines and chemokines, along with the appearance of extracellular histones, which are highly proinflammatory and prothrombotic. In the current study, we studied different innate immune responses in mice with knockout (KO) of complement protein 6 (C6). Polymorphonuclear neutrophils (PMNs) from these KO mice had defective innate immune responses, including defective expression of surface adhesion molecules, generation of superoxide anion, and appearance of reactive oxygen species and histone release after activation of PMNs, along with defective phagocytosis. In addition, in C6-/- mice, the NLRP3 inflammasome was defective both in PMNs and in macrophages. When these KO mice were subjected to polymicrobial sepsis, their survival was improved, associated with reduced levels in the plasma of proinflammatory cytokines and chemokines and lower levels of histones in plasma. In addition, sepsis-induced cardiac dysfunction was attenuated in these KO mice. In a model of acute lung injury induced by LPS, C6-/- mice showed reduced PMN buildup and less lung epithelial/endothelial cell dysfunction (edema and hemorrhage). These data indicate that C6-/- mice have reduced innate immune responses that result in less organ injury and improved survival after polymicrobial sepsis.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Cardiomiopatías/inmunología , Coinfección/inmunología , Complemento C6/metabolismo , Inmunidad Innata , Sepsis/inmunología , Lesión Pulmonar Aguda/diagnóstico , Lesión Pulmonar Aguda/patología , Animales , Cardiomiopatías/diagnóstico , Cardiomiopatías/patología , Coinfección/complicaciones , Coinfección/diagnóstico , Coinfección/patología , Complemento C6/genética , Modelos Animales de Enfermedad , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Sepsis/complicaciones , Sepsis/diagnóstico , Sepsis/genética , Índice de Severidad de la Enfermedad
8.
Shock ; 54(5): 595-605, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32187106

RESUMEN

There is abundant evidence that infectious sepsis both in humans and mice with polymicrobial sepsis results in robust activation of complement. Major complement activation products involved in sepsis include C5a anaphylatoxin and its receptors (C5aR1 and C5aR2) and, perhaps, the terminal complement activation product, C5b-9. These products (and others) also cause dysfunction of the innate immune system, with exaggerated early proinflammatory responses, followed by decline of the innate immune system, leading to immunosuppression and multiorgan dysfunction. Generation of C5a during sepsis also leads to activation of neutrophils and macrophages and ultimate appearance of extracellular histones, which have powerful proinflammatory and prothrombotic activities. The distal complement activation product, C5b-9, triggers intracellular Ca fluxes in epithelial and endothelial cells. Histones activate the NLRP3 inflammasome, products of which can damage cells. C5a also activates MAPKs and Akt signaling pathways in cardiomyocytes, causing buildup of [Ca]i, defective action potentials and substantial cell dysfunction, resulting in cardiac and other organ dysfunction. Cardiac dysfunction can be quantitated by ECHO-Doppler parameters. In vivo interventions that block these complement-dependent products responsible for organ dysfunction in sepsis reduce the intensity of sepsis. The obvious targets in sepsis are C5a and its receptors, histones, and perhaps the MAPK pathways. Blockade of C5 has been considered in sepsis, but the FDA-approved antibody (eculizumab) is known to compromise defenses against neisseria and pneumonococcal bacteria, and requires immunization before the mAb to C5 can be used clinically. Small molecular blocking agents for C5aRs are currently in development and may be therapeutically effective for treatment of sepsis.


Asunto(s)
Complemento C5a/metabolismo , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Sepsis/metabolismo , Animales , Señalización del Calcio , Humanos , Sistema de Señalización de MAP Quinasas , Macrófagos/metabolismo , Macrófagos/patología , Neutrófilos/metabolismo , Neutrófilos/patología , Sepsis/patología , Sepsis/terapia
9.
J Leukoc Biol ; 106(1): 187-192, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30821872

RESUMEN

In this mini review, we describe the molecular mechanisms in polymicrobial sepsis that lead to a series of adverse events including activation of inflammatory and prothrombotic pathways, a faulty innate immune system, and multiorgan dysfunction. Complement activation is a well-established feature of sepsis, especially involving generation of C5a and C5b-9, along with engagement of relevant receptors for C5a. Activation of neutrophils by C5a leads to extrusion of DNA, forming neutrophil extracellular traps that contain myeloperoxidase and oxidases, along with extracellular histones. Generation of the distal complement activation product, C5b-9 (known as the membrane attack complex, MAC), also occurs in sepsis. C5b-9 activates the NLRP3 inflammasome, which damages mitochondria, together with appearance in plasma of IL-1ß and IL-18. Histones are strongly proinflammatory as well as being prothrombotic, leading to activation of platelets and development of venous thrombosis. Multiorgan dysfunction is also a feature of sepsis. It is well known that septic cardiomyopathy, which if severe, can lead to death. This complication in sepsis is linked to reduced levels in cardiomyocytes of three critical proteins (SERCA2, NCX, Na+ /K+ -ATPase). The reductions in these three key proteins are complement- and histone-dependent. Dysfunction of these ATPases is linked to the cardiomyopathy of sepsis. These data suggest novel targets in the setting of sepsis in humans.


Asunto(s)
Enfermedades Transmisibles/inmunología , Sepsis/inmunología , Animales , Cardiomiopatías/etiología , Enfermedades Transmisibles/tratamiento farmacológico , Complejo de Ataque a Membrana del Sistema Complemento/fisiología , Proteínas del Sistema Complemento/fisiología , Histonas/fisiología , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/fisiología , Sepsis/complicaciones , Sepsis/tratamiento farmacológico
10.
J Immunol ; 202(3): 931-942, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30578307

RESUMEN

Sepsis is the leading cause of death in the intensive care unit with an overall mortality rate of 20%. Individuals who are obese and have type 2 diabetes have increased recurrent, chronic, nosocomial infections that worsen the long-term morbidity and mortality from sepsis. Additionally, animal models of sepsis have shown that obese, diabetic mice have lower survival rates compared with nondiabetic mice. Neutrophils are essential for eradication of bacteria, prevention of infectious complications, and sepsis survival. In diabetic states, there is a reduction in neutrophil chemotaxis, phagocytosis, and reactive oxygen species (ROS) generation; however, few studies have investigated the extent to which these deficits compromise infection eradication and mortality. Using a cecal ligation and puncture model of sepsis in lean and in diet-induced obese mice, we demonstrate that obese diabetic mice have decreased "emergency hematopoiesis" after an acute infection. Additionally, both neutrophils and monocytes in obese, diabetic mice have functional defects, with decreased phagocytic ability and a decreased capacity to generate ROS. Neutrophils isolated from obese diabetic mice have decreased transcripts of Axl and Mertk, which partially explains the phagocytic dysfunction. Furthermore, we found that exogenous GM-CSF administration improves sepsis survival through enhanced neutrophil and monocytes phagocytosis and ROS generation abilities in obese, diabetic mice with sepsis.


Asunto(s)
Diabetes Mellitus Experimental/inmunología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Inmunidad Innata/efectos de los fármacos , Obesidad/inmunología , Sepsis/inmunología , Animales , Bacterias , Citocinas/genética , Citocinas/inmunología , Diabetes Mellitus Experimental/microbiología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología , Monocitos/patología , Neutrófilos/inmunología , Neutrófilos/patología , Obesidad/microbiología , Fagocitosis , Sepsis/tratamiento farmacológico , Sepsis/microbiología
11.
Biomed Res Int ; 2018: 4302726, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364002

RESUMEN

We determined the roles of TLR3 and TLR9 in adverse events of polymicrobial sepsis, with a focus on development of septic cardiomyopathy, progression of which we have recently shown to be complement- and histones-dependent. So Wt, TLR3-knocked out (K.O.), and TLR9-K.O. mice were subjected to polymicrobial sepsis following cecal ligation and puncture (CLP). In the absence of either TLR3 or TLR9, the intensity of echocardiogram (Echo)-Doppler dysfunction during development of cardiomyopathy was substantially reduced in the K.O. mice. Based on our prior studies emphasizing the adverse effects of plasma C5a and histones in the cardiomyopathy of sepsis, in TLR3- and TLR9-K.O. mice, there were striking reductions in plasma levels of C5a and histones as well as reduced levels of cytokines in plasma and heart tissue after CLP. Since we know that histones cause cardiac dysfunction, rat cardiomyocytes (CMs) were exposed in vitro to the histones (purified from calf thymus), which caused bleb formation on the surfaces of CMs, suggesting histones may perturb the cell membrane of CMs. In vitro, exposure of CMs to the histones for 3 hours caused lactate dehydrogenase release from CMs. These data indicate that sepsis-induced cardiac dysfunction requires presence of TLR3 and TLR9 and may be linked to histone-induced damage of CMs.


Asunto(s)
Cardiomiopatías/inmunología , Histonas/inmunología , Miocitos Cardíacos/inmunología , Sepsis/inmunología , Receptor Toll-Like 3/inmunología , Receptor Toll-Like 9/inmunología , Animales , Cardiomiopatías/sangre , Cardiomiopatías/genética , Histonas/sangre , Histonas/genética , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Sepsis/sangre , Sepsis/genética , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
12.
Mol Immunol ; 102: 32-41, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29914696

RESUMEN

Polymicrobial sepsis (after cecal ligation and puncture, CLP) causes robust complement activation with release of C5a. Many adverse events develop thereafter and will be discussed in this review article. Activation of complement system results in generation of C5a which interacts with its receptors (C5aR1, C5aR2). This leads to a series of harmful events, some of which are connected to the cardiomyopathy of sepsis, resulting in defective action potentials in cardiomyocytes (CMs), activation of the NLRP3 inflammasome in CMs and the appearance of extracellular histones, likely arising from activated neutrophils which form neutrophil extracellular traps (NETs). These events are associated with activation of mitogen-activated protein kinases (MAPKs) in CMs. The ensuing release of histones results in defective action potentials in CMs and reduced levels of [Ca2+]i-regulatory enzymes including sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2) and Na+/Ca2+ exchanger (NCX) as well as Na+/K+-ATPase in CMs. There is also evidence that CLP causes release of IL-1ß via activation of the NLRP3 inflammasome in CMs of septic hearts or in CMs incubated in vitro with C5a. Many of these events occur after in vivo or in vitro contact of CMs with histones. Together, these data emphasize the role of complement (C5a) and C5a receptors (C5aR1, C5aR2), as well as extracellular histones in events that lead to cardiac dysfunction of sepsis (septic cardiomyopathy).


Asunto(s)
Cardiomiopatías/sangre , Cardiomiopatías/etiología , Complemento C5a/metabolismo , Histonas/metabolismo , Sepsis/complicaciones , Animales , Cardiomiopatías/fisiopatología , Activación de Complemento/fisiología , Humanos
13.
Artículo en Inglés | MEDLINE | ID: mdl-29163354

RESUMEN

Sepsis develops when an infection surpasses local tissue containment. A series of dysregulated physiological responses are generated, leading to organ dysfunction and a 10% mortality risk. When patients with sepsis demonstrate elevated serum lactates and require vasopressor therapy to maintain adequate blood pressure in the absence of hypovolemia, they are in septic shock with an in-hospital mortality rate >40%. With improvements in intensive care treatment strategies, overall sepsis mortality has diminished to ~20% at 30 days; however, mortality continues to steadily climb after recovery from the acute event. Traditionally, it was thought that the complex interplay between inflammatory and anti-inflammatory responses led to sepsis-induced organ dysfunction and mortality. However, a closer examination of those who die long after sepsis subsides reveals that many initial survivors succumb to recurrent, nosocomial, and secondary infections. The comorbidly challenged, physiologically frail diabetic individuals suffer the highest infection rates. Recent reports suggest that even after clinical "recovery" from sepsis, persistent alterations in innate and adaptive immune responses exists resulting in chronic inflammation, immune suppression, and bacterial persistence. As sepsis-associated immune defects are associated with increased mortality long-term, a potential exists for immune modulatory therapy to improve patient outcomes. We propose that diabetes causes a functional immune deficiency that directly reduces immune cell function. As a result, patients display diminished bactericidal clearance, increased infectious complications, and protracted sepsis mortality. Considering the substantial expansion of the elderly and obese population, global adoption of a Western diet and lifestyle, and multidrug resistant bacterial emergence and persistence, diabetic mortality from sepsis is predicted to rise dramatically over the next two decades. A better understanding of the underlying diabetic-induced immune cell defects that persist following sepsis are crucial to identify potential therapeutic targets to bolster innate and adaptive immune function, prevent infectious complications, and provide more durable diabetic survival.

14.
Immunity ; 47(1): 3-5, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723551

RESUMEN

Following a severe primary infection or trauma, the risk of developing pneumonia increases due to acquired immune defects collectively known as sepsis-induced immunosuppression. In this issue of Immunity, Roquilly et al. (2017) show that dendritic cells and macrophages developing in the lung after the resolution of a severe infection acquire tolerogenic properties that contribute to persistent immunosuppression and susceptibility to secondary infections.


Asunto(s)
Tolerancia Inmunológica , Sepsis/inmunología , Células Dendríticas/inmunología , Humanos , Terapia de Inmunosupresión , Macrófagos/inmunología
15.
FASEB J ; 31(9): 4129-4139, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28572445

RESUMEN

Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.


Asunto(s)
Complemento C5a/metabolismo , Regulación de la Expresión Génica/fisiología , Cardiopatías/etiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sepsis/metabolismo , Animales , Complemento C5a/genética , Cardiopatías/metabolismo , Interleucinas , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo
16.
J Innate Immun ; 9(3): 300-317, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28171866

RESUMEN

Histones invoke strong proinflammatory responses in many different organs and cells. We assessed biological responses to purified or recombinant histones, using human and murine phagocytes and mouse lungs. H1 had the strongest ability in vitro to induce cell swelling independent of requirements for toll-like receptors (TLRs) 2 or 4. These responses were also associated with lactate dehydrogenase release. H3 and H2B were the strongest inducers of [Ca2+]i elevations in phagocytes. Cytokine and chemokine release from mouse and human phagocytes was predominately a function of H2A and H2B. Double TLR2 and TLR4 knockout (KO) mice had dramatically reduced cytokine release induced in macrophages exposed to individual histones. In contrast, macrophages from single TLR-KO mice showed few inhibitory effects on cytokine production. Using the NLRP3 inflammasome protocol, release of mature IL-1ß was predominantly a feature of H1. Acute lung injury following the airway delivery of histones suggested that H1, H2A, and H2B were linked to alveolar leak of albumin and the buildup of polymorphonuclear neutrophils as well as the release of chemokines and cytokines into bronchoalveolar fluids. These results demonstrate distinct biological roles for individual histones in the context of inflammation biology and the requirement of both TLR2 and TLR4.


Asunto(s)
Histonas/inmunología , Inflamasomas/metabolismo , Inflamación/inmunología , Pulmón/inmunología , Fagocitos/inmunología , Animales , Células Cultivadas , Humanos , Interleucina-1beta/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal , Receptor Toll-Like 2/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
17.
Mol Immunol ; 84: 57-64, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27931779

RESUMEN

It is well known that cardiac dysfunction develops during sepsis in both humans and in rodents (rats, mice). These defects appear to be reversible, since after "recovery" from sepsis, cardiac dysfunction disappears and the heart returns to its function that was present before the onset of sepsis. Our studies, using in vivo and in vitro models, have demonstrated that C5a and its receptors (C5aR1 and C5aR2) play key roles in cardiac dysfunction developing during sepsis. Use of a neutralizing antibody to C5a largely attenuates cardiac dysfunction and other adverse events developing during sepsis. The molecular basis for cardiac dysfunctions is linked to generation of C5a and its interaction with C5a receptors present on surfaces of cardiomyocytes (CMs). It is established that C5a interactions with C5a receptors leads to significant reductions involving faulty contractility and relaxation in CMs. In addition, C5a interactions with C5a receptors on CMs results in reductions in Na+/K+-ATPase in CMs. This ATPase is essential for intact action potentials in CMs. The enzymatic activity and protein for this ATPase were strikingly reduced in CMs during sepsis by unknown mechanisms. In addition, C5a interactions with C5aRs also caused reductions in CM homeostatic proteins that regulate cytosolic [Ca2+]i in CMs: sarco/endoplasmic reticulum Ca2+-ATPase2 (SERCA2) and Na+/Ca2+ exchanger (NCX). In the absence of C5a receptors, defects in SERCA2 and NCX in CMs after sepsis are strikingly attenuated. These observations suggest new strategies to protect the heart from dysfunction developing during sepsis.


Asunto(s)
Cardiomiopatías/etiología , Complemento C5a/inmunología , Miocitos Cardíacos/inmunología , Receptor de Anafilatoxina C5a/inmunología , Sepsis/complicaciones , Animales , Humanos , Sepsis/inmunología
19.
J Immunol ; 197(6): 2353-61, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521340

RESUMEN

There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.


Asunto(s)
Coinfección/inmunología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Sepsis/inmunología , Sepsis/fisiopatología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/inmunología , Coinfección/microbiología , Coinfección/fisiopatología , Complemento C5a/inmunología , Citoplasma/química , Citoplasma/metabolismo , Corazón/fisiopatología , Ratones , Miocitos Cardíacos/microbiología , Receptor de Anafilatoxina C5a/deficiencia , Receptor de Anafilatoxina C5a/inmunología , Receptor de Anafilatoxina C5a/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/inmunología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sepsis/complicaciones
20.
FASEB J ; 30(12): 3997-4006, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27543123

RESUMEN

Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1ß. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1ß. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1ß proteins in CMs. CLP caused substantial increases in mRNAs for IL-1ß and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1ß and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1ß. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.


Asunto(s)
Complemento C5a/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sepsis/metabolismo , Animales , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA