Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (199)2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37843289

RESUMEN

Photocontrolled, biologically active compounds are an emerging class of "smart" drug candidates. They provide additional safety in systemic chemotherapy due to their precise spatiotemporal activation by directing a benign, non-ionizable light to a specific location within the patient's body. This paper presents a set of methods to evaluate the in vitro potency and ex vivo efficiency of the photoactivation of photocontrolled, biologically active compounds as well as the in vivo efficacy at early stages of drug development. The methodology is applied to anticancer cytotoxic peptides, namely, the diarylethene-containing analogs of a known antibiotic, gramicidin S. The experiments are performed using 2D (adherent cells) and 3D (spheroids) cell cultures of a cancer cell line (Lewis lung carcinoma, LLC), live tissue surrogates (pork meat mince), and an allograft cancer model (subcutaneous LLC) in immunocompetent mice. The selection of the most effective compounds and estimation of realistic phototherapeutic windows are performed via automated fluorescence microscopy. The photoactivation efficiency at varying illumination regimens is determined at different depths in a model tissue, and the optimal light dosage is applied in the final therapeutic in vivo experiment.


Asunto(s)
Antineoplásicos , Carcinoma Pulmonar de Lewis , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Carcinoma Pulmonar de Lewis/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA