Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mater Chem A Mater ; 11(37): 19854-19859, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-38013847

RESUMEN

A multifunctional material design, integrating catalytic as well as auxiliary magnetic susception and contactless thermal sensing functionalities, unlocks catalyst-specific heating and thermometry for spatially proximate solid catalysts in a single reactor. The new concept alleviates temperature incompatibilities in tandem catalysis, as showcased for the direct production of propene from ethene, via sequential olefin dimerization and metathesis reactions.

2.
Angew Chem Int Ed Engl ; 62(1): e202214048, 2023 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-36315420

RESUMEN

A frontier challenge in single-atom (SA) catalysis is the design of fully inorganic sites capable of emulating the high reaction selectivity traditionally exclusive of organometallic counterparts in homogeneous catalysis. Modulating the direct coordination environment in SA sites, via the exploitation of the oxide support's surface chemistry, stands as a powerful albeit underexplored strategy. We report that isolated Rh atoms stabilized on oxygen-defective SnO2 uniquely unite excellent TOF with essentially full selectivity in the gas-phase hydroformylation of ethylene, inhibiting the thermodynamically favored olefin hydrogenation. Density Functional Theory calculations and surface characterization suggest that substantial depletion of the catalyst surface in lattice oxygen, energetically facile on SnO2 , is key to unlock a high coordination pliability at the mononuclear Rh centers, leading to an exceptional performance which is on par with that of molecular catalysts in liquid media.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA