Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomimetics (Basel) ; 8(2)2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37366832

RESUMEN

Inspired by nature, oscillating foils offer viable options as alternate energy resources to harness energy from wind and water. Here, we propose a proper orthogonal decomposition (POD)-based reduced-order model (ROM) of power generation by flapping airfoils in conjunction with deep neural networks. Numerical simulations are performed for incompressible flow past a flapping NACA-0012 airfoil at a Reynolds number of 1100 using the Arbitrary Lagrangian-Eulerian approach. The snapshots of the pressure field around the flapping foil are then utilized to construct the pressure POD modes of each case, which serve as the reduced basis to span the solution space. The novelty of the current research relates to the identification, development, and employment of long-short-term neural network (LSTM) models to predict temporal coefficients of the pressure modes. These coefficients, in turn, are used to reconstruct hydrodynamic forces and moment, leading to computations of power. The proposed model takes the known temporal coefficients as inputs and predicts the future temporal coefficients followed by previously estimated temporal coefficients, very similar to traditional ROM. Through the new trained model, we can predict the temporal coefficients for a long time duration that can be far beyond the training time intervals more accurately. It may not be attained by traditional ROMs that lead to erroneous results. Consequently, the flow physics including the forces and moment exerted by fluids can be reconstructed accurately using POD modes as the basis set.

2.
Sci Rep ; 10(1): 10629, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606348

RESUMEN

The present paper examines the flow behavior and separation region of a non-Newtonian electrically conducting Casson fluid through a two-dimensional porous channel by using Darcy's law for the steady and pulsatile flows. The vorticity-stream function approach is employed for the numerical solution of the flow equations. The effects of various emerging parameters on wall shear stress and stream-wise velocity are displayed through graphs and discussed in detail. It is noticed the increasing values of the magnetic field parameter (Hartman number) cause vanishing of the flow separation region and flattening of the stream-wise velocity component. The study also reveals that the non-Newtonian character of Casson fluid bears the potential of controlling the flow separation region in both steady and pulsating flow conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA