Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proteomics ; 20(7): e1900177, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32027465

RESUMEN

To identify protein-protein interactions and phosphorylated amino acid sites in eukaryotic mRNA translation, replicate TAP-MudPIT and control experiments are performed targeting Saccharomyces cerevisiae genes previously implicated in eukaryotic mRNA translation by their genetic and/or functional roles in translation initiation, elongation, termination, or interactions with ribosomal complexes. Replicate tandem affinity purifications of each targeted yeast TAP-tagged mRNA translation protein coupled with multidimensional liquid chromatography and tandem mass spectrometry analysis are used to identify and quantify copurifying proteins. To improve sensitivity and minimize spurious, nonspecific interactions, a novel cross-validation approach is employed to identify the most statistically significant protein-protein interactions. Using experimental and computational strategies discussed herein, the previously described protein composition of the canonical eukaryotic mRNA translation initiation, elongation, and termination complexes is calculated. In addition, statistically significant unpublished protein interactions and phosphorylation sites for S. cerevisiae's mRNA translation proteins and complexes are identified.


Asunto(s)
Biosíntesis de Proteínas , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatografía Liquida , Mapeo de Interacción de Proteínas , Proteómica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Espectrometría de Masas en Tándem
2.
J Proteome Res ; 10(4): 1481-94, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21280672

RESUMEN

The eukaryotic initiation factor 3 (eIF3) is an essential, highly conserved multiprotein complex that is a key component in the recruitment and assembly of the translation initiation machinery. To better understand the molecular function of eIF3, we examined its composition and phosphorylation status in Saccharomyces cerevisiae. The yeast eIF3 complex contains five core components: Rpg1, Nip1, Prt1, Tif34, and Tif35. 2-D LC-MS/MS analysis of affinity purified eIF3 complexes showed that several other initiation factors (Fun12, Tif5, Sui3, Pab1, Hcr1, and Sui1) and the casein kinase 2 complex (CK2) copurify. In Vivo metabolic labeling of proteins with (32)P revealed that Nip1 is phosphorylated. Using 2-D LC-MS/MS analysis of eIF3 complexes, we identified Prt1 phosphopeptides indicating phosphorylation at S22 and T707 and a Tif5 phosphopeptide with phosphorylation at T191. Additionally, we used immobilized metal affinity chromatography (IMAC) to enrich for eIF3 phosphopeptides and tandem mass spectrometry to identify phosphorylated residues. We found that three CK2 consensus sequences in Nip1 are phosphorylated: S98, S99, and S103. Using in vitro kinase assays, we showed that CK2 phophorylates Nip1 and that a synthetic Nip1 peptide containing S98, S99, and S103 competitively inhibits the reaction. Replacement of these three Nip1 serines with alanines causes a slow growth phenotype.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Liquida/métodos , Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/genética , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Fosfopéptidos/genética , Fosfopéptidos/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masas en Tándem/métodos
3.
J Biol Chem ; 285(50): 39425-36, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-20923758

RESUMEN

Fundamental knowledge about how G protein-coupled receptors and their ligands interact is important for understanding receptor-ligand binding and the development of new drug discovery strategies. We have used cross-linking and tandem mass spectrometry analyses to investigate the interaction of the N terminus of the Saccharomyces cerevisiae tridecapeptide pheromone, α-factor (WHWLQLKPGQPMY), and Ste2p, its cognate G protein-coupled receptor. The Trp(1) residue of α-factor was replaced by 3,4-dihydroxyphenylalanine (DOPA) for periodate-mediated chemical cross-linking, and biotin was conjugated to Lys(7) for detection purposes to create the peptide [DOPA(1),Lys(7)(BioACA),Nle(12)]α-factor, called Bio-DOPA(1)-α-factor. This ligand analog was a potent agonist and bound to Ste2p with ∼65 nanomolar affinity. Immunoblot analysis of purified Ste2p samples that were treated with Bio-DOPA(1)-α-factor showed that the peptide analog cross-linked efficiently to Ste2p. The cross-linking was inhibited by the presence of either native α-factor or an α-factor antagonist. MALDI-TOF and immunoblot analyses revealed that Bio-DOPA(1)-α-factor cross-linked to a fragment of Ste2p encompassing residues Ser(251)-Met(294). Fragmentation of the cross-linked fragment and Ste2p using tandem mass spectrometry pinpointed the cross-link point of the DOPA(1) of the α-factor analog to the Ste2p Lys(269) side chain near the extracellular surface of the TM6-TM7 bundle. This conclusion was confirmed by a greatly diminished cross-linking of Bio-DOPA(1)-α-factor into a Ste2p(K269A) mutant. Based on these and previously obtained binding contact data, a mechanism of α-factor binding to Ste2p is proposed. The model for bound α-factor shows how ligand binding leads to conformational changes resulting in receptor activation of the signal transduction pathway.


Asunto(s)
Dihidroxifenilalanina/química , Ácido Peryódico/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Unión Competitiva , Reactivos de Enlaces Cruzados/química , Cinética , Ligandos , Espectrometría de Masas/métodos , Mitógenos/química , Mutagénesis Sitio-Dirigida , Péptidos/química , Unión Proteica , Conformación Proteica , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
4.
Methods Enzymol ; 463: 725-63, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19892200

RESUMEN

Posttranslational modifications (PTMs) of proteins perform crucial roles in regulating the biology of the cell. PTMs are enzymatic, covalent chemical modifications of proteins that typically occur after the translation of mRNAs. These modifications are relevant because they can potentially change a protein's physical or chemical properties, activity, localization, or stability. Some PTMs can be added and removed dynamically as a mechanism for reversibly controlling protein function and cell signaling. Extensive investigations have aimed to identify PTMs and characterize their biological functions. This chapter will discuss the existing and emerging techniques in the field of mass spectrometry and proteomics that are available to identify and quantify PTMs. We will focus on the most frequently studied modifications. In addition, we will include an overview of the available tools and technologies in tandem mass spectrometry instrumentation that affect the ability to identify specific PTMs.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteínas/metabolismo , Proteómica/métodos , Animales , Humanos , Espectrometría de Masas/métodos , Modelos Biológicos , Procesamiento Proteico-Postraduccional/fisiología
5.
J Phys Chem B ; 112(45): 14291-5, 2008 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-18922031

RESUMEN

To examine the effects of pi-stacking interactions between aromatic amino acid side chains and adenine bearing ligands in crystalline protein structures, 26 toluene/(N9-methyl)adenine model configurations have been constructed from protein/ligand crystal structures. Full geometry optimizations with the MP2 method cause the 26 crystal structures to collapse to six unique structures. The complete basis set (CBS) limit of the CCSD(T) interaction energies has been determined for all 32 structures by combining explicitly correlated MP2-R12 computations with a correction for higher-order correlation effects from CCSD(T) calculations. The CCSD(T) CBS limit interaction energies of the 26 crystal structures range from -3.19 to -6.77 kcal mol (-1) and average -5.01 kcal mol (-1). The CCSD(T) CBS limit interaction energies of the optimized complexes increase by roughly 1.5 kcal mol (-1) on average to -6.54 kcal mol (-1) (ranging from -5.93 to -7.05 kcal mol (-1)). Corrections for higher-order correlation effects are extremely important for both sets of structures and are responsible for the modest increase in the interaction energy after optimization. The MP2 method overbinds the crystal structures by 2.31 kcal mol (-1) on average compared to 4.50 kcal mol (-1) for the optimized structures.


Asunto(s)
Adenina/química , Fenilalanina/química , Proteínas/química , Cristalografía por Rayos X , Dimerización , Ligandos , Modelos Moleculares , Conformación Molecular , Unión Proteica , Tolueno/química
6.
Biochemistry ; 44(37): 12445-53, 2005 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-16156657

RESUMEN

The protein-based molecular recognition of the adenine ring has implications throughout biological systems. In this paper, we discuss the adenine-binding region of an aminoglycoside antibiotic kinase [APH(3')-IIIa], which serves as an excellent model system for proteins that bind the adenine ring. This enzyme employs a hydrogen-bonding network involving water molecules along with enzyme backbone/side-chain atoms and a pi-pi stacking interaction to recognize the adenine ring. Our approach utilized site-directed mutagenesis, adenosine analogues and a variety of biophysical methods to probe the contacts in the adenine-binding region of APH(3')-IIIa. The results point to the polar nature of an adenine-Met90 contact in this binding pocket and the important role that Met90, the "gatekeeper" residue in structurally similar Ser/Thr protein kinases, plays in adenine binding. The results also suggest that small changes in the structure of the adenine ring can lead to significant changes in the ability of these analogues to occupy the adenine-binding region of the enzyme. Additional computational experiments indicate that both size and electronic factors are important in the binding of aromatic systems in this interaction-rich pocket. The principles governing adenine recognition established in this study may be applied to other protein-ligand complexes and used to navigate future studies directed at discovering potent and selective inhibitors of APH-type enzymes.


Asunto(s)
Adenina/metabolismo , Kanamicina Quinasa/química , Kanamicina Quinasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cartilla de ADN , Cinética , Modelos Moleculares , Mutagénesis , Conformación Proteica , Proteínas Quinasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Propiedades de Superficie , Termodinámica
7.
Chem Biol ; 9(11): 1209-17, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12445771

RESUMEN

A key contact in the active site of an aminoglycoside phosphotransferase enzyme (APH(3')-IIIa) is a pi-pi stacking interaction between Tyr42 and the adenine ring of bound nucleotides. We investigated the prevalence of similar Tyr-adenine contacts and found that many different protein systems employ Tyr residues in the recognition of the adenine ring. The geometry of these stacking interactions suggests that electrostatics play a role in the attraction between these aromatic systems. Kinetic and calorimetric experiments on wild-type and mutant forms of APH(3')-IIIa yielded further experimental evidence of the importance of electrostatics in the adenine binding region and suggested that the stacking interaction contributes approximately 2 kcal/mol of binding energy. This type of information concerning the forces that govern nucleotide binding in APH(3')-IIIa will facilitate inhibitor design strategies that target the nucleotide binding site of APH-type enzymes.


Asunto(s)
Adenosina Difosfato/química , Electrones , Kanamicina Quinasa/antagonistas & inhibidores , Modelos Moleculares , Adenina , Adenosina Difosfato/farmacología , Calorimetría , Kanamicina Quinasa/química , Cinética , Ligandos , Unión Proteica , Electricidad Estática , Termodinámica , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA