Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1451100, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39140033

RESUMEN

Diabetic cardiomyopathy (DCM) is a severe secondary complication of type 2 diabetes mellitus (T2DM) that is diagnosed as a heart disease occurring in the absence of any previous cardiovascular pathology in diabetic patients. Although it is still lacking an exact definition as it combines aspects of both pathologies - T2DM and heart failure, more evidence comes forward that declares DCM as one complex disease that should be treated separately. It is the ambiguous pathological phenotype, symptoms or biomarkers that makes DCM hard to diagnose and screen for its early onset. This re-view provides an updated look on the novel advances in DCM diagnosis and treatment in the experimental and clinical settings. Management of patients with DCM proposes a challenge by itself and we aim to help navigate and advice clinicians with early screening and pharmacotherapy of DCM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/diagnóstico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Manejo de la Enfermedad , Animales
2.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003687

RESUMEN

Cardiovascular diseases, especially ischemic heart disease, as a leading cause of heart failure (HF) and mortality, will not reduce over the coming decades despite the progress in pharmacotherapy, interventional cardiology, and surgery. Although patients surviving acute myocardial infarction live longer, alteration of heart function will later lead to HF. Its rising incidence represents a danger, especially among the elderly, with data showing more unfavorable results among females than among males. Experiments revealed an infarct-sparing effect of ischemic "preconditioning" (IPC) as the most robust form of innate cardioprotection based on the heart's adaptation to moderate stress, increasing its resistance to severe insults. However, translation to clinical practice is limited by technical requirements and limited time. Novel forms of adaptive interventions, such as "remote" IPC, have already been applied in patients, albeit with different effectiveness. Cardiac ischemic tolerance can also be increased by other noninvasive approaches, such as adaptation to hypoxia- or exercise-induced preconditioning. Although their molecular mechanisms are not yet fully understood, some noninvasive modalities appear to be promising novel strategies for fighting HF through targeting its numerous mechanisms. In this review, we will discuss the molecular mechanisms of heart injury and repair, as well as interventions that have potential to be used in the treatment of patients.


Asunto(s)
Insuficiencia Cardíaca , Precondicionamiento Isquémico Miocárdico , Infarto del Miocardio , Isquemia Miocárdica , Masculino , Humanos , Anciano , Precondicionamiento Isquémico Miocárdico/métodos , Corazón , Isquemia , Insuficiencia Cardíaca/terapia
3.
Cardiovasc Toxicol ; 23(5-6): 185-197, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119387

RESUMEN

Intermittent hypoxic preconditioning (IHP) is a well-established cardioprotective intervention in models of ischemia/reperfusion injury. Nevertheless, the significance of IHP in different cardiac pathologies remains elusive. In order to investigate the role of IHP and its effects on calcium-dependent signalization in HF, we employed a model of cardiomyopathy induced by doxorubicin (Dox), a widely used drug from the class of cardiotoxic antineoplastics, which was i.p. injected to Wistar rats (4 applications of 4 mg/kg/week). IHP-treated group was exposed to IHP for 2 weeks prior to Dox administration. IHP ameliorated Dox-induced reduction in cardiac output. Western blot analysis revealed increased expression of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) while the expression of hypoxia inducible factor (HIF)-1-α, which is a crucial regulator of hypoxia-inducible genes, was not changed. Animals administered with Dox had further decreased expression of TRPV1 and TRPV4 (transient receptor potential, vanilloid subtype) ion channels along with suppressed Ca2+/calmodulin-dependent protein kinase II (CaMKII) activation. In summary, IHP-mediated improvement in cardiac output in the model of Dox-induced cardiomyopathy is likely a result of increased SERCA2a expression which could implicate IHP as a potential protective intervention in Dox cardiomyopathy, however, further analysis of observed effects is still required.


Asunto(s)
Cardiomiopatías , Miocitos Cardíacos , Ratas , Animales , Ratas Wistar , Apoptosis , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiomiopatías/metabolismo , Doxorrubicina/toxicidad , Hipoxia/inducido químicamente
4.
Rev Cardiovasc Med ; 24(7): 190, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39077008

RESUMEN

A variety of vegetable and fruit derived food oils are considered beneficial for human health due to their content of functional components including their positive effects in cardiovascular system. In addition to the favorable ratio of unsaturated versus saturated fatty acids, some of these oils include also other health beneficial compounds such as vitamins, minerals, pigments, enzymes and phenolic compounds. Particularly polyphenols have been documented to exert numerous positive effects in cardiovascular system including their anti-hypertensive, anti-atherogenic as well as cardio- and vasculo- protective effects in subjects suffering from various cardiovascular and cardiometabolic diseases, likely via their antioxidant, anti-inflammatory, anti-coagulant, anti-proliferative and anti-diabetic properties. However, it has not been proven so far whether the positive cardiovascular effects of polyphenol-rich food oils are, and to what measure, attributed to their phenolic content. Thus, the current review aims to summarize the main cardiovascular effects of major polyphenol-rich food oils including olive, flaxseed, soybean, sesame and coconut oils, and to uncover the role of their phenolic compounds in these effects.

5.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681669

RESUMEN

Aging attenuates cardiac tolerance to ischemia/reperfusion (I/R) associated with defects in protective cell signaling, however, the onset of this phenotype has not been completely investigated. This study aimed to compare changes in response to I/R and the effects of remote ischemic preconditioning (RIPC) in the hearts of younger adult (3 months) and mature adult (6 months) male Wistar rats, with changes in selected proteins of protective signaling. Langendorff-perfused hearts were exposed to 30 min I/120 min R without or with prior three cycles of RIPC (pressure cuff inflation/deflation on the hind limb). Infarct size (IS), incidence of ventricular arrhythmias and recovery of contractile function (LVDP) served as the end points. In both age groups, left ventricular tissue samples were collected prior to ischemia (baseline) and after I/R, in non-RIPC controls and in RIPC groups to detect selected pro-survival proteins (Western blot). Maturation did not affect post-ischemic recovery of heart function (Left Ventricular Developed Pressure, LVDP), however, it increased IS and arrhythmogenesis accompanied by decreased levels and activity of several pro-survival proteins and by higher levels of pro-apoptotic proteins in the hearts of elder animals. RIPC reduced the occurrence of reperfusion-induced ventricular arrhythmias, IS and contractile dysfunction in younger animals, and this was preserved in the mature adults. RIPC did not increase phosphorylated protein kinase B (p-Akt)/total Akt ratio, endothelial nitric oxide synthase (eNOS) and protein kinase Cε (PKCε) prior to ischemia but only after I/R, while phosphorylated glycogen synthase kinase-3ß (GSK3ß) was increased (inactivated) before and after ischemia in both age groups coupled with decreased levels of pro-apoptotic markers. We assume that resistance of rat heart to I/R injury starts to already decline during maturation, and that RIPC may represent a clinically relevant cardioprotective intervention in the elder population.


Asunto(s)
Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/patología , Miocardio/metabolismo , Envejecimiento , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hemodinámica , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Wistar
6.
Molecules ; 25(1)2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31906454

RESUMEN

Background: Quercetin (QCT) was shown to exert beneficial cardiovascular effects in young healthy animals. The aim of the present study was to determine cardiovascular benefits of QCT in older, 6-month and 1-year-old Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). Methods: Lean (fa/+) and obese (fa/fa) ZDF rats of both ages were treated with QCT for 6 weeks (20 mg/kg/day). Isolated hearts were exposed to ischemia-reperfusion (I/R) injury (30 min/2 h). Endothelium-dependent vascular relaxation was measured in isolated aortas. Expression of selected proteins in heart tissue was detected by Western blotting. Results: QCT reduced systolic blood pressure in both lean and obese 6-month-old rats but had no effect in 1-year-old rats. Diabetes worsened vascular relaxation in both ages. QCT improved vascular relaxation in 6-month-old but worsened in 1-year-old obese rats and had no impact in lean controls of both ages. QCT did not exert cardioprotective effects against I/R injury and even worsened post-ischemic recovery in 1-year-old hearts. QCT up-regulated expression of eNOS in younger and PKCε expression in older rats but did not activate whole PI3K/Akt pathway. Conclusions: QCT might be beneficial for vascular function in diabetes type 2; however, increasing age and/or progression of diabetes may confound its vasculoprotective effects. QCT seems to be inefficient in preventing myocardial I/R injury in type 2 diabetes and/or higher age. Impaired activation of PI3K/Akt kinase pathway might be, at least in part, responsible for failing cardioprotection in these subjects.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Isquemia Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Quercetina/uso terapéutico , Análisis de Varianza , Animales , Isquemia Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/fisiopatología , Ratas , Ratas Zucker , Transducción de Señal/efectos de los fármacos
7.
Can J Physiol Pharmacol ; 95(10): 1204-1212, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28683229

RESUMEN

Currently, there are no satisfactory interventions to protect the heart against the detrimental effects of ischemia-reperfusion injury. Although ischemic preconditioning (PC) is the most powerful form of intrinsic cardioprotection, its application in humans is limited to planned interventions, due to its short duration and technical requirements. However, many organs/tissues are capable of producing "remote" PC (RPC) when subjected to brief bouts of ischemia-reperfusion. RPC was first described in the heart where brief ischemia in one territory led to protection in other area. Later on, RPC started to be used in patients with acute myocardial infarction, albeit with ambiguous results. It is hypothesized that the connection between the signal triggered in remote organ and protection induced in the heart can be mediated by humoral and neural pathways, as well as via systemic response to short sublethal ischemia. However, although RPC has a potentially important clinical role, our understanding of the mechanistic pathways linking the local stimulus to the remote organ remains incomplete. Nevertheless, RPC appears as a cost-effective and easily performed intervention. Elucidation of protective mechanisms activated in the remote organ may have therapeutic and diagnostic implications in the management of myocardial ischemia and lead to development of pharmacological RPC mimetics.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/prevención & control , Animales , Modelos Animales de Enfermedad , Humanos , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocardio/metabolismo , Miocardio/patología , Flujo Sanguíneo Regional , Transducción de Señal , Factores de Tiempo , Resultado del Tratamiento
8.
Can J Physiol Pharmacol ; 95(10): 1163-1169, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28472590

RESUMEN

Long-lasting ischemia can result in cell loss; however, repeated episodes of brief ischemia increase the resistance of the heart against deleterious effects of subsequent prolonged ischemic insult and promote cell survival. Traditionally, it is believed that the supply of blood to the ischemic heart is associated with release of cytokines, activation of inflammatory response, and induction of necrotic cell death. In the past few years, this paradigm of passive necrosis as an uncontrolled cell death has been re-examined and the existence of a strictly regulated form of necrotic cell death, necroptosis, has been documented. This controlled cell death modality, resembling all morphological features of necrosis, has been investigated in different types of ischemia-associated heart injuries. The process of necroptosis has been found to be dependent on the activation of RIP1-RIP3-MLKL axis, which induces changes leading to the rupture of cell membrane. This pathway is activated by TNF-α, which has also been implicated in the cardioprotective signaling pathway of ischemic preconditioning. Thus, this review is intended to describe the TNF-α-mediated signaling leading to either cell survival or necroptotic cell death. In addition, some experimental data suggesting a link between heart dysfunction and the cellular loss due to necroptosis are discussed in various conditions of myocardial ischemia.


Asunto(s)
Apoptosis , Isquemia Miocárdica/patología , Miocardio/metabolismo , Animales , Apoptosis/efectos de los fármacos , Humanos , Isquemia Miocárdica/metabolismo , Miocardio/patología , Necrosis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
9.
Can J Physiol Pharmacol ; 95(8): 888-893, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28350967

RESUMEN

Generation of free radicals through incomplete reduction of oxygen during ischemia-reperfusion (I/R) is well described. On the other hand, molecular hydrogen (H2) reduces oxidative stress due to its ability to react with strong oxidants and easily penetrate cells by diffusion, without disturbing metabolic redox reactions. This study was designed to explore cardioprotective potential of hypoxic postconditioning (HpostC) against I/R (30 min global I - 120 min R) in isolated rat hearts using oxygen-free Krebs-Henseleit buffer (KHB). Furthermore, the possibility to potentiate the effect of HpostC by H2 using oxygen-free KHB saturated with H2 (H2 + HpostC) was tested. HPostC was induced by 4 cycles of 1-minute perfusion with oxygen-free KHB intercepted by 1-minute perfusion with normal KHB, at the onset of reperfusion. H2 + HPostC was applied in a similar manner using H2-enriched oxygen-free KHB. Cardioprotective effects were evaluated on the basis of infarct size (IS, in % of area at risk, AR) reduction, post-I/R recovery of heart function, and occurrence of reperfusion arrhythmias. HPostC significantly reduced IS/AR compared with non-conditioned controls. H2 present in KHB during HPostC further decreased IS/AR compared with the effect of HPostC, attenuated severe arrhythmias, and significantly restored heart function (vs. controls). Cardioprotection by HpostC can be augmented by molecular hydrogen infusion.


Asunto(s)
Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Hidrógeno/farmacología , Poscondicionamiento Isquémico , Infarto del Miocardio/fisiopatología , Oxígeno/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Corazón/fisiopatología , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Daño por Reperfusión Miocárdica/complicaciones , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Wistar , Disfunción Ventricular Izquierda/complicaciones
10.
J Inorg Biochem ; 167: 80-88, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27912082

RESUMEN

Starting from well-defined NH2(CH3)2[PdCl2(XQ)] complexes, coordination compounds of general formula Cat[PdCl2(XQ)] have been prepared by cationic exchange of NH2(CH3)2+ and Cat cations, where XQ are biologically active halogen derivatives of quinolin-8-ol (5-chloro-7-iodo-quinolin-8-ol (CQ), 5,7-dibromo-quinolin-8-ol (dBrQ) and 5,7-dichloro-quinolin-8-ol (dClQ)) and Cat is K+ or Cs+. The cation exchange of all prepared complexes, K[PdCl2(CQ)] (1), K[PdCl2(dClQ)] (2), K[PdCl2(dBrQ)] (3), Cs[PdCl2(CQ)] (4), Cs[PdCl2(dClQ)] (5) and Cs[PdCl2(dBrQ)] (6) was approved using IR spectroscopy, their structures in DMSO solution were elucidated by one- and two-dimensional NMR experiments, whereas their stability in solution was verified by UV-VIS spectroscopy. Interaction of complexes to ctDNA was investigated using UV-VIS and fluorescence emission spectroscopy. The minimum inhibitory concentration and the minimum microbicidal concentration values were detected against 15 bacterial strains and 4 yeast strains to examine the antimicrobial activity for the complexes. The in vitro antitumor properties of the complexes were studied by testing the complexes on leukemic cell line L1210, ovarian cancer cell line A2780 and non-cancerous cell line HEK293. The majority of the prepared compounds exhibited moderate antimicrobial and very high cytotoxic activity.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Bacterias/crecimiento & desarrollo , Cesio , Complejos de Coordinación , Neoplasias/tratamiento farmacológico , Paladio , Potasio , Animales , Antiinfecciosos/síntesis química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Cesio/química , Cesio/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , ADN/química , Ensayos de Selección de Medicamentos Antitumorales , Ratones , Neoplasias/metabolismo , Neoplasias/patología , Paladio/química , Paladio/farmacología , Potasio/química , Potasio/farmacología
11.
J Inorg Biochem ; 154: 67-77, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26600190

RESUMEN

A series of new 3d metal complexes with 5-chloro-quinolin-8-ol (ClQ), [Mn(ClQ)2] (1), [Fe(ClQ)3] (2), [Co(ClQ)2(H2O)2] (3), [Ni(ClQ)2(H2O)2] (4), [Cu(ClQ)2] (5), [Zn(ClQ)2(H2O)2] (6), [Mn(ClQ)3]·DMF (7) and [Co(ClQ)3]·DMF·(EtOH)0.35 (8) (DMF=N,N-dimethylformamide), has been synthesized and characterized by elemental analysis, IR spectroscopy and TG-DTA thermal analysis. X-ray structure analysis of 7 and 8 revealed that these molecular complexes contain three chelate ClQ molecules coordinated to the central atoms in a deformed octahedral geometry and free space between the complex units is filled by solvated DMF and ethanol molecules. Antimicrobial activity of 1-6 was tested by determining the minimum inhibitory concentration and minimum microbicidal concentration against 12 strains of bacteria and 5 strains of fungi. The intensity of antimicrobial action varies depending on the group of microorganism and can be sorted: 1>ClQ>6>3/4>2>5. Complexes 1-6 exhibit high cytotoxic activity against MDA-MB, HCT-116 and A549 cancer cell lines. Among them, complex 2 is significantly more cytotoxic against MDA-MB cells than cisplatin at all tested concentrations and is not cytotoxic against control mesenchymal stem cells indicating that this complex seems to be a good candidate for future pharmacological evaluation. Interaction of 1-6 with DNA was investigated using UV-VIS spectroscopy, fluorescence spectroscopy and agarose gel electrophoresis. The binding studies indicate that 1-6 can interact with CT-DNA through intercalation; complex 2 has the highest binding affinity. Moreover, complexes 1-6 inhibit the catalytic activity of topoisomerase I.


Asunto(s)
Antibacterianos/síntesis química , Quelantes/síntesis química , Cloroquinolinoles/síntesis química , Complejos de Coordinación/síntesis química , Inhibidores de Topoisomerasa I/síntesis química , Antibacterianos/farmacología , Supervivencia Celular/efectos de los fármacos , Quelantes/farmacología , Cloroquinolinoles/farmacología , Complejos de Coordinación/farmacología , ADN/química , Células HCT116 , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Inhibidores de Topoisomerasa I/farmacología , Elementos de Transición/química
12.
Can J Physiol Pharmacol ; 93(9): 793-802, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26317433

RESUMEN

Sex and social stress may represent risk factors in the etiology of hypertension and heart response to ischemia-reperfusion (I/R) injury. Phosphatidylinositol 3-kinase/protein kinase B (Akt) plays an important role in the processes associated with hypertension and myocardial tolerance to I/R, and may be involved in myocardial stress reaction. The impact of chronic stress on the response to I/R was investigated in the hearts of 7-week-old spontaneously hypertensive (SHR) and Wistar-Kyoto (WKY) rats of both sexes. Stress was induced by reducing living space to 70 cm(2)/100 g body mass of rat for 2 weeks, while the controls were kept at 200 cm(2)/100 g. Langendorff-perfused hearts, subjected to I/R, exhibited higher vulnerability to ventricular tachycardia in crowd-stressed SHR vs. the control rats, and this was more pronounced in the males. Myocardial infarction was not affected by crowding stress in any of the groups. Male and female SHR showed increased activation of cardiac Akt, whereas nitric oxide synthase activity (NOS) with pro-apoptotic signaling decreased in the males but was not altered in the females (vs. WKY rats). NOS was enhanced in the female SHR and WKY groups by comparison with the respective males. Stress only reduced NOS activity in the SHR groups, and without changes in apoptotic markers. In conclusion, we showed that stress in young SHR mainly affects the nonlethal markers for I/R, and has no impact on myocardial infarction and apoptosis, despite reduced NOS activity.


Asunto(s)
Aglomeración/psicología , Hipertensión/complicaciones , Daño por Reperfusión Miocárdica/fisiopatología , Daño por Reperfusión Miocárdica/psicología , Miocardio/metabolismo , Estrés Psicológico/fisiopatología , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Presión Sanguínea/fisiología , Peso Corporal/fisiología , Femenino , Frecuencia Cardíaca/fisiología , Hipertensión/fisiopatología , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Infarto del Miocardio/psicología , Daño por Reperfusión Miocárdica/complicaciones , Óxido Nítrico Sintasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Endogámicas SHR , Caracteres Sexuales , Estrés Psicológico/psicología , Taquicardia Ventricular/complicaciones , Taquicardia Ventricular/fisiopatología
13.
Can J Physiol Pharmacol ; 93(7): 495-503, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25965412

RESUMEN

Although pleiotropy, which is defined as multiple effects derived from a single gene, was recognized many years ago, and considerable progress has since been achieved in this field, it is not very clear how much this feature of a drug is clinically relevant. During the last decade, beneficial pleiotropic effects from hypolipidemic drugs (as in, effects that are different from the primary ones) have been associated with reduction of cardiovascular risk. As with statins, the agonists of peroxisome proliferator-activated receptors (PPARs), niacin and fibrates, have been suggested to exhibit pleiotropic activity that could significantly modify the outcome of a cardiovascular ailment. This review examines findings demonstrating the impacts of treatment with hypolipidemic drugs on cardiac response to ischemia in a setting of acute ischemia-reperfusion, in relation to PPAR activation. Specifically, it addresses the issue of susceptibility to ischemia, with particular regard to the preconditioning-like cardioprotection conferred by hypolipidemic drugs, as well as the potential molecular mechanisms behind this cardioprotection. Finally, the involvement of PPAR activation in the mechanisms of non-metabolic cardioprotective effects from hypolipidemic drugs, and their effects on normal and pathologically altered myocardium (in the hearts of hypertensive rats) is also discussed.


Asunto(s)
Cardiotónicos/farmacología , Hipertensión/tratamiento farmacológico , Hipolipemiantes/farmacología , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Cardiotónicos/administración & dosificación , Cardiotónicos/uso terapéutico , Modelos Animales de Enfermedad , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipolipemiantes/administración & dosificación , Hipolipemiantes/uso terapéutico , Metabolismo de los Lípidos/efectos de los fármacos , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Ratas
14.
J Inorg Biochem ; 131: 37-46, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24239911

RESUMEN

Three novel palladium(II) complexes, NH2(CH3)2[PdCl2(CQ)] (1) (CQ=5-chloro-7-iodo-quinolin-8-ol), NH2(CH3)2[PdCl2(dClQ)] (2) (dClQ=5,7-dichloro-quinolin-8-ol) and NH2(CH3)2[PdCl2(dBrQ)] (3) (dBrQ=5,7-dibromo-quinolin-8-ol) have been prepared and characterized. Their structures contain square-planar [PdCl2(XQ)](-) complex anions in which deprotonated XQ ligands are coordinated to the Pd atoms via the pyridine nitrogen and the phenolato oxygen atoms, other two cis-positions are occupied by two chlorido ligands. Negative charges of these anions are balanced by uncoordinated dimethylammonium cations. Coordination of the XQ ligands to Pd(II) atom was confirmed by the differences in the stretching ν(OH) and ν(CN) vibrations in the IR spectra of ligands and prepared complexes while bands of aliphatic CH and NH stretching vibrations observed in the spectra of 1-3 confirm the presence of dimethylammonium cations in the complexes. The binding of complexes 1-3 to calf thymus DNA was investigated using UV-visible and fluorescence emission spectrophotometry. The fluorescence spectral results indicate that the complexes can bind to DNA through an intercalative mode. The Stern-Volmer quenching constants obtained from the linear quenching plot are in the 1.04 × 10(4) to 4.35 × 10(4) M(-1) range. The complexes exhibit significant anticancer activity tested on A2780 cells and cisplatin resistant cell line A2780/CP.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Paladio/química , Antineoplásicos/síntesis química , Antineoplásicos/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Técnicas de Química Sintética , Cisplatino/farmacología , ADN/metabolismo , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Halógenos/química , Humanos , Enlace de Hidrógeno , Ligandos , Estructura Molecular , Quinolinas/química , Espectrometría de Fluorescencia , Espectrofotometría Infrarroja , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA